### http://www.xriadiat.com

# **DM2:** B

PROF: ATMANI NAJIB

## **Tronc commun Sciences BIOF**

# Correction: Devoir Maison n°2: B sur les leçons suivantes:

- > L'ensemble des nombres réels et sous-ensembles
- ightharpoonup L'ordre dans :  $\mathbb R$
- > La droite dans le plan

### **Exercice01**: $3pts(0,5pts\times6)$

Factorisez les expressions suivantes :

$$A = 16x^2 - 8x + 1$$
;  $B = x^3 + 64 + 3(x^2 - 16) - 3x - 12$ ;  $C = x^5 + x^3 - x^2 - 1$ ;  $D = x^4 - 49$ ;

$$E = x^6 + 2x^3 + 1$$
 :  $F = a^2 + 4b^2 - x^2 + 4ab$  :

**Corrigé :** 
$$A = 16x^2 - 8x + 1 = (4x)^2 - 2 \times 4x \times 1 + 1^2 = (4x - 1)^2$$

Pour B on Remarque que :  $x^3 + 64 = x^3 + 4^3$  identité remarquable du type :  $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$ 

$$B = x^3 + 64 + 3(x^2 - 16) - 3x - 12 = x^3 + 4^3 + 3(x^2 - 4^2) - 3(x + 4)$$

$$=(x+4)(x^2-4x+4^2)+3(x+4)(x-4)-3(x+4)$$

Donc: 
$$B = (x+4) \left[ (x^2 - 4x + 16) + 3(x-4) - 3 \right] = (x+4) (x^2 - 4x + 16 + 3x - 12 - 3)$$

Donc: 
$$B = (x+4)(x^2-x+1)$$

$$C = x^5 + x^3 - x^2 - 1$$

$$C = x^3(x^2+1)-(x^2+1)=(x^2+1)(x^3-1)=(x^2+1)(x^3-1^3)$$
 et  $a^3-b^3=(a-b)(a^2+ab+b^2)$ 

$$C = (x^2 + 1)(x - 1)(x^2 - x \times 1 + 1^2) = (x^2 + 1)(x - 1)(x^2 - x + 1)$$

$$D = x^4 - 49 = x^4 - \left(\sqrt{7}\right)^4 = \left(x^2\right)^2 - \left(\sqrt{7}^2\right)^2$$

$$D = \left(x^2 - \sqrt{7}^2\right) \left(x^2 + \sqrt{7}^2\right) = \left(x - \sqrt{7}\right) \left(x + \sqrt{7}\right) \left(x^2 + 7\right)$$

$$E = x^6 + 2x^3 + 1$$

$$E = (x^3)^2 + 2 \times x^3 \times 1 + 1^2$$
 est du type :  $a^2 + 2ab + b^2$ 

Donc: 
$$E = (x^3 + 1)^2$$

$$F = a^2 + 4b^2 - x^2 + 4ab$$

$$F = (a^2 + 4ab + 4b^2) - x^2$$

$$F = (a^2 + 2 \times a \times 2b + (2b)^2) - x^2 = (a + 2b)^2 - x^2 = (a + 2b - x)(a + 2b + x)$$

**Exercice01**: 
$$(2pts) a \in \mathbb{R}^*$$
 et  $b \in \mathbb{R}^*$  et  $a \ge b$ 

Montrer que : 
$$\sqrt{a+\sqrt{a^2-b^2}} = \frac{\sqrt{2}}{2} \left(\sqrt{a-b} + \sqrt{a+b}\right)$$

Corrigé : Pour montrer que deux nombres positifs sont égaux on pourra montrer que leurs carrés

sont égaux :On a : 
$$\left(\sqrt{a+\sqrt{a^2-b^2}}\,\right)^2=a+\sqrt{a^2-b^2}$$

$$\left(\frac{\sqrt{2}}{2}\left(\sqrt{a-b}+\sqrt{a+b}\right)\right)^2 = \left(\frac{\sqrt{2}}{2}\right)^2 \times \left(\sqrt{a-b}+\sqrt{a+b}\right)^2 = \frac{2}{4} \times \left(\sqrt{a-b}+\sqrt{a+b}\right)^2 = \frac{1}{2} \times \left(\left(\sqrt{a-b}\right)^2 + 2\sqrt{a-b}\sqrt{a+b} + \left(\sqrt{a+b}\right)^2\right) = \left(\frac{\sqrt{2}}{2}\right)^2 \times \left(\sqrt{a-b}+\sqrt{a+b}\right)^2 = \frac{1}{2} \times$$

$$= \frac{2}{4} \times \left(\sqrt{a-b} + \sqrt{a+b}\right)^2 = \frac{1}{2} \times \left(a-b+2\sqrt{(a-b)(a+b)} + a+b\right) = \frac{1}{2} \times \left(2a+2\sqrt{(a-b)(a+b)}\right) = a+\sqrt{(a-b)(a+b)} = a+\sqrt{a^2-b^2}$$

Donc on a : 
$$\left(\sqrt{a+\sqrt{a^2-b^2}}\right)^2 = \left(\frac{\sqrt{2}}{2}\left(\sqrt{a-b}+\sqrt{a+b}\right)\right)^2$$

Par suite : 
$$\sqrt{a+\sqrt{a^2-b^2}} = \frac{\sqrt{2}}{2} \left(\sqrt{a-b} + \sqrt{a+b}\right)$$

Exercice03: (2pts)

Soit  $x \in \mathbb{R}$  tel que :  $x^2 - 3x - 8 = 0$  et x > 3

Monter que : 
$$A = \frac{1}{\sqrt{2}} \left( \sqrt{\frac{x-3}{x}} - \sqrt{\frac{x}{x-3}} \right) \in \mathbb{Q}$$

**Corrigé**: On a : 
$$x^2 - 3x - 8 = 0$$
 donc :  $x(x-3) = 8$  C'est-à-dire :  $x-3 = \frac{8}{x}$ 

D'où 
$$\frac{x-3}{x} = \frac{8}{x^2}$$
 et  $\frac{x}{x-3} = \frac{x^2}{8}$ 

Par suite: 
$$\sqrt{\frac{x-3}{x}} = \sqrt{\frac{8}{x^2}} = \frac{\sqrt{8}}{x}$$
 et  $\sqrt{\frac{x}{x-3}} = \sqrt{\frac{x^2}{8}} = \frac{x}{\sqrt{8}}$  car  $x > 3 > 0$ 

Donc: 
$$A = \frac{1}{\sqrt{2}} \left( \sqrt{\frac{x-3}{x}} - \sqrt{\frac{x}{x-3}} \right) = \frac{1}{\sqrt{2}} \left( \frac{\sqrt{8}}{x} - \frac{x}{\sqrt{8}} \right)$$

$$A = \frac{1}{\sqrt{2}} \left( \frac{2\sqrt{2}}{x} - \frac{x}{2\sqrt{2}} \right) = \frac{2}{x} - \frac{x}{4} = \frac{8 - x^2}{4x}$$

Or: 
$$x^2 - 3x - 8 = 0$$
 implique  $-3x = 8 - x^2$ 

$$Donc: A = \frac{-3x}{4x} = \frac{-3}{4} \in \mathbb{Q}$$

**Exercice04**:  $6pts(1pts \times 6)$ 

Soient: x et y des réels tels que : -4 < x < -1 et 2 < y < 5

- 1) Donner un encadrement pour chacun des nombres suivants :
- a) 2x + 3y + 7
- b) 2x 3y 2
- c) (2x-3)(3y+10) d)  $(2x-3)^2 \sqrt{3y+10}$
- 2) En déduire un encadrement des nombres :  $A = \frac{2x-3y-2}{2x+3y+7}$  et  $B = \frac{3y+10}{2x-3y-2}$

**Corrigé :** Soient : x et y des réels tels que : -4 < x < -1 et 2 < y < 5

1)a) Encadrement de : 2x+3y+7

On a: 
$$-4 < x < -1$$
 et  $2 < y < 5$  donc:  $-8 < 2x < -2$  et  $6 < 3y < 15$ 

Donc: 
$$-8+6 < 2x+3y < -2+15$$

Donc: 
$$-2 < 2x + 3y < 13$$

Donc: 
$$-2+7 < 2x+3y+7 < 13+7$$
 Donc:  $5 < 2x+3y+7 < 20$ 

b) Encadrement de : 
$$2x-3y-2=2x+(-3y)-2$$

On a: 
$$-8 < 2x < -2$$
 et  $6 < 3y < 15$ 

Donc: 
$$-8 < 2x < -2$$
 et  $-15 < -3y < -6$ 

Donc: 
$$-8+(-15)<2x+(-3y)<-2+(-6)$$

Donc: 
$$-23 < 2x + (-3y) < -8$$

Donc: 
$$-23-2 < 2x-3y-2 < -8-2$$

Donc: -25 < 2x - 3y - 2 < -10

c) Encadrement de : (2x-3)(3y+10)

On a: -8 < 2x < -2 et 6 < 3y < 15

Donc: -8-3<2x-3<-2-3 et 6+10<3y+10<15+10

Donc: -11 < 2x - 3 < -5 et 16 < 3y + 10 < 25

Donc: 5 < -(2x-3) < 11 et 16 < 3y+10 < 25

Donc:  $5 \times 16 < -(2x-3)(3y+10) < 11 \times 25$ 

Donc: 80 < -(2x-3)(3y+10) < 275

Donc: -275 < (2x-3)(3y+10) < -80

d) Encadrement de :  $(2x-3)^2 - \sqrt{3y+10} = (2x-3)^2 + (-\sqrt{3y+10})$ 

On a: -11 < 2x - 3 < -5 donc: 5 < -(2x - 3) < 11

Donc:  $25 < (-(2x-3))^2 < 121$ 

Donc:  $25 < (2x-3)^2 < 121(1)$ 

On a aussi: 6 < 3y < 15 donc: 6+10 < 3y+10 < 15+10

Donc: 16 < 3y + 10 < 25

Donc:  $\sqrt{16} < \sqrt{3y+10} < \sqrt{25}$ 

Donc:  $-5 < -\sqrt{3y+10} < -4$ 

Donc: ① et ②donnent:  $25+(-5)<(2x-3)^2+(-\sqrt{3y+10})<121+(-4)$ 

Donc:  $20 < (2x-3)^2 - \sqrt{3y+10} < 117$ 

2) a) Déduisons un encadrement du nombre :  $A = \frac{2x-3y-2}{2x+3y+7} = (2x-3y-2) \times \frac{1}{2x+3y+7}$ 

On a: -25 < 2x - 3y - 2 < -10 et 5 < 2x + 3y + 7 < 20

Donc: 10 < -(2x-3y-2) < 25 et  $\frac{1}{20} < \frac{1}{2x+3y+7} < \frac{1}{5}$ 

Donc:  $\frac{10}{20} < -(2x-3y-2) \times \frac{1}{2x+3y+7} < \frac{25}{5}$ 

Donc:  $\frac{1}{2} < -(2x-3y-2) \times \frac{1}{2x+3y+7} < 5$ 

Donc:  $-5 < (2x-3y-2) \times \frac{1}{2x+3y+7} < -\frac{1}{2}$  Par suite:  $-5 < A < -\frac{1}{2}$ 

2)b) Déduisons un encadrement du nombre :  $B = \frac{3y+10}{2x-3y-2} = (3y+10) \times \frac{1}{2x-3y-2}$ 

On a: 16 < 3y + 10 < 25 et -25 < 2x - 3y - 2 < -10

On a: 16 < 3y + 10 < 25 et 10 < -(2x - 3y - 2) < 25

Donc: 16 < 3y + 10 < 25 et  $\frac{1}{25} < -\frac{1}{(2x - 3y - 2)} < \frac{1}{10}$ 

Donc:  $\frac{16}{25} < -(3y+10) \times \frac{1}{2x-3y-2} < \frac{25}{10}$ 

Donc:  $-\frac{25}{10} < (3y+10) \times \frac{1}{2x-3y-2} < -\frac{16}{25}$ 

Par suite :  $-\frac{5}{2} < B < -\frac{16}{25}$ 

<u>3</u>

**Exercice05**:  $3 pts(0,5 pts \times 6)$ 

Soit  $x \in \mathbb{R}$  tel que : x > 1 ; On pose :  $A = \frac{\sqrt{x}}{\sqrt{x-1}}$ 

- 1) Montrer que :  $A-1=\frac{1}{\sqrt{x-1}(\sqrt{x}+\sqrt{x-1})}$
- 2) a) Vérifier que :  $2\sqrt{x-1} \le \sqrt{x} + \sqrt{x-1} \le 2\sqrt{x}$
- b) En déduire que :  $\frac{1}{2\sqrt{x}\sqrt{x-1}} \le A 1 \le \frac{1}{2(x-1)}$
- 3) a) Montrer que :  $\frac{1}{x} \le \frac{1}{\sqrt{x}\sqrt{x-1}}$
- b) En déduire que  $:1 + \frac{1}{2x} \le A \le \frac{1}{2(x-1)} + 1$
- 4) Déduire que  $\frac{9}{4}$  est une valeur approchée de  $\sqrt{5}$  avec la précision  $\frac{1}{20}$

Corrigé : 1) Montrons que :  $A-1=\frac{1}{\sqrt{x-1}(\sqrt{x}+\sqrt{x-1})}$ 

Soit  $x \in \mathbb{R}$  tel que : x > 1

$$A-1 = \frac{\sqrt{x}}{\sqrt{x-1}} - 1 = \frac{\sqrt{x} - \sqrt{x-1}}{\sqrt{x-1}} = \frac{\left(\sqrt{x} - \sqrt{x-1}\right)\left(\sqrt{x} + \sqrt{x-1}\right)}{\sqrt{x-1}\left(\sqrt{x} + \sqrt{x-1}\right)}$$
 (Le conjugué)

$$A - 1 = \frac{\sqrt{x^2} - \sqrt{x - 1}^2}{\sqrt{x - 1} \left(\sqrt{x} + \sqrt{x - 1}\right)} = \frac{x - x + 1}{\sqrt{x - 1} \left(\sqrt{x} + \sqrt{x - 1}\right)} = \frac{1}{\sqrt{x - 1} \left(\sqrt{x} + \sqrt{x - 1}\right)}$$

2) a) Vérifions que :  $2\sqrt{x-1} \le \sqrt{x} + \sqrt{x-1} \le 2\sqrt{x}$ 

Soit 
$$x > 1$$
:  $2\sqrt{x-1} - (\sqrt{x} + \sqrt{x-1}) = 2\sqrt{x-1} - \sqrt{x} - \sqrt{x-1} = \sqrt{x-1} - \sqrt{x}$ 

On a :  $-1 \le 0$  alors :  $x-1 \le x$  par suite :  $\sqrt{x-1} \le \sqrt{x}$  donc :  $\sqrt{x-1} - \sqrt{x} \le 0$ 

D'où : 
$$2\sqrt{x-1} - (\sqrt{x} + \sqrt{x-1}) \le 0$$
 c'est-à-dire :  $2\sqrt{x-1} \le \sqrt{x} + \sqrt{x-1}$  1

D'autre part, on a :  $\sqrt{x} + \sqrt{x-1} - 2\sqrt{x} = \sqrt{x-1} - \sqrt{x}$  et comme  $\sqrt{x-1} - \sqrt{x} \le 0$ 

Alors:  $\sqrt{x} + \sqrt{x-1} - 2\sqrt{x} \le 0$ 

Donc:  $\sqrt{x} + \sqrt{x-1} \le 2\sqrt{x}$  (2)

D'après ①et ②on obtient :  $2\sqrt{x-1} \le \sqrt{x} + \sqrt{x-1} \le 2\sqrt{x}$ 

b) Déduisons que : 
$$\frac{1}{2\sqrt{x}\sqrt{x-1}} \le A - 1 \le \frac{1}{2(x-1)}$$

Soit 
$$x > 1$$
: On a:  $2\sqrt{x-1} \le \sqrt{x} + \sqrt{x-1} \le 2\sqrt{x}$ 

Alors: 
$$2\sqrt{x-1} \times \sqrt{x-1} \le \sqrt{x-1} \times (\sqrt{x} + \sqrt{x-1}) \le \sqrt{x-1} \times 2\sqrt{x}$$

Alors: 
$$2(x-1) \le \sqrt{x-1} \times (\sqrt{x} + \sqrt{x-1}) \le 2\sqrt{x-1} \times \sqrt{x}$$

$$\mathsf{Donc}: \frac{1}{2\sqrt{x-1} \times \sqrt{x}} \le \frac{1}{\sqrt{x-1} \times \left(\sqrt{x} + \sqrt{x-1}\right)} \le \frac{1}{2(x-1)}$$

C'est-à-dire : 
$$\frac{1}{2\sqrt{x}\sqrt{x-1}} \le A - 1 \le \frac{1}{2(x-1)}$$

3) a) Montrons que : 
$$\frac{1}{x} \le \frac{1}{\sqrt{x}\sqrt{x-1}}$$

Soit 
$$x > 1$$
;  $\frac{1}{x} - \frac{1}{\sqrt{x}\sqrt{x-1}} = \frac{\sqrt{x}\sqrt{x-1} - x}{x\sqrt{x}\sqrt{x-1}} = \frac{\sqrt{x(x-1)} - x}{x\sqrt{x}\sqrt{x-1}} = \frac{\left(\sqrt{x(x-1)} - x\right)\left(\sqrt{x(x-1)} + x\right)}{x\sqrt{x}\sqrt{x-1}\left(\sqrt{x(x-1)} + x\right)}$ 

$$\frac{1}{x} - \frac{1}{\sqrt{x}\sqrt{x-1}} = \frac{\left(\sqrt{x(x-1)} - x\right)\left(\sqrt{x(x-1)} + x\right)}{x\sqrt{x}\sqrt{x-1}\left(\sqrt{x(x-1)} + x\right)} = \frac{x(x-1) - x^2}{x\sqrt{x}\sqrt{x-1}\left(\sqrt{x(x-1)} + x\right)} = \frac{x^2 - x - x^2}{x\sqrt{x}\sqrt{x-1}\left(\sqrt{x(x-1)} + x\right)}$$

$$\frac{1}{x} - \frac{1}{\sqrt{x}\sqrt{x-1}} = \frac{-x}{x\sqrt{x}\sqrt{x-1}\left(\sqrt{x(x-1)} + x\right)}$$

Comme : 
$$-x < -1$$
 et  $-1 < 0$  alors :  $-x < 0$  et on sait que :  $x\sqrt{x}\sqrt{x-1}\left(\sqrt{x(x-1)} + x\right) > 0$ 

Donc: 
$$\frac{-x}{x\sqrt{x}\sqrt{x-1}\left(\sqrt{x(x-1)}+x\right)} \le 0$$
 c'est-à-dire:  $\frac{1}{x} \le \frac{1}{\sqrt{x}\sqrt{x-1}}$ 

b) Déduisons que : 
$$1 + \frac{1}{2x} \le A \le \frac{1}{2(x-1)} + 1$$

Soit 
$$x > 1$$
; On a:  $\frac{1}{x} \le \frac{1}{\sqrt{x}\sqrt{x-1}}$  alors:  $\frac{1}{2x} \le \frac{1}{2\sqrt{x}\sqrt{x-1}}$  et comme:  $\frac{1}{2\sqrt{x}\sqrt{x-1}} \le A - 1$ 

Alors: 
$$\frac{1}{2x} \le A - 1$$
 par suite:  $\frac{1}{2x} \le A - 1 \le \frac{1}{2(x-1)}$ 

Donc: 
$$1 + \frac{1}{2x} \le A \le \frac{1}{2(x-1)} + 1$$

Par suite : 
$$\sqrt{x-1} + \frac{\sqrt{x-1}}{2x} \le \sqrt{x} \le \frac{1}{2\sqrt{x-1}} + \sqrt{x-1}$$

Donc: 
$$\sqrt{x-1} + \frac{\sqrt{x-1}}{2x} - \frac{9}{4} \le \sqrt{x} - \frac{9}{4} \le \frac{1}{2\sqrt{x-1}} + \sqrt{x-1} - \frac{9}{4}$$

On prend : 
$$x = 5$$
 on obtient :  $-\frac{1}{20} \le \sqrt{5} - \frac{9}{4} \le 0$  et comme :  $0 \le \frac{1}{20}$ 

Alors: 
$$-\frac{1}{20} \le \sqrt{5} - \frac{9}{4} \le \frac{1}{20}$$
 donc:  $\left| \sqrt{5} - \frac{9}{4} \right| \le \frac{1}{20}$ 

D'où : 
$$\frac{9}{4}$$
 est une valeur approchée de  $\sqrt{5}$  avec la précision  $\frac{1}{20}$ 

**Exercice01**: 4 pts(1 pts + 1 pts + 2 pts) Soient ABCD un parallélogramme et M le point de la droite (AD) et N le point tel que :  $\overrightarrow{BN} = -3\overrightarrow{AM}$ 

Et on considère le Repère :  $(A; \vec{i}; \vec{j})$  tel que :  $\vec{i} = \overrightarrow{AD}$  et  $\vec{j} = \overrightarrow{AB}$  et soit m l'abscisse du point M Dans le ce Repère.

1) Déterminer les coordonnées du point N.

2)Donner une équation cartésienne de la droite (MN).

3)Montrer que quel que soit la position du point M sur la droite (AD) alors la droite (MN) passe par un point fixe F qui ne dépend pas du point et dont on déterminera les coordonnées.

**Solution**: ABCD un parallélogramme et  $M \in (AD)$  et  $\overrightarrow{BN} = -3\overrightarrow{AM}$ 

1) On considère le Repère  $(A; \vec{i}; \vec{j})$ :  $\vec{i} = \overrightarrow{AD}$  et  $\vec{j} = \overrightarrow{AB}$ 

m L'abscisse du point M dans le Repère  $(A; \vec{i}; \vec{j})$ : Equivaut à :  $\overrightarrow{AM} = m\vec{i}$ 

Equivaut à :  $\overrightarrow{AM} = m\overrightarrow{AD}$  ( $M \in (AD)$  donc :  $y_M = 0$  ) Donc : N(m;0)

Détermination des coordonnées du point N ?

On a :  $\overrightarrow{BN} = -3\overrightarrow{AM}$  Equivaut à :  $\overrightarrow{BA} + \overrightarrow{AN} = -3\overrightarrow{AM}$ 

Equivaut à :  $\overrightarrow{AN} = -3\overrightarrow{AM} + \overrightarrow{AB}$ 

Equivaut à :  $\overrightarrow{AN} = -3m\overrightarrow{i} + \overrightarrow{j}$  par suite : N(-3m;1)

2) Détermination d'une équation cartésienne de la droite (MN)

On a : N(-3m;1) et N(m;0)

Soit  $L(x; y) \in (MN)$  Equivaut à :  $\det(\overrightarrow{ML}; \overrightarrow{MN}) = 0$ 

Equivaut à :  $\begin{vmatrix} x-m & -4m \\ y & 1 \end{vmatrix} = 0$  Equivaut à : x-m+4my=0 par suite : (MN): x+4my-m=0

3)  $F \in (MN)$  Quel que soit m on a :  $x_F + 4my_F - m = 0$ 

Equivaut à :  $x_F + m(4y_F - 1) = 0$ 

Equivaut à :  $x_F = 0$  et  $4y_F - 1 = 0$  Equivaut à :  $x_F = 0$  et  $y_F = \frac{1}{4}$  par suite :  $F\left(0; \frac{1}{4}\right)$ .

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

