http://www.xriadiat.com

DS4: I

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Correction: Devoir surveillé n°4: I sur les leçons suivantes:

- ✓ TRIGONOMÉTRIE partie1
- ✓ TRIGONOMÉTRIE partie2 : Equations et inéquations trigonométriques

Exercice01: 4pts(1pts+1pts+1pts+1pts)

Calculer en fonction de : $\sin x$ et $\cos x$ les expressions suivantes :

$$A = \sin\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{3}\right) + \sin\left(\frac{\pi}{2}\right) + \sin\left(\frac{2\pi}{3}\right) + \sin\left(\frac{5\pi}{6}\right) + \sin\left(\pi\right)$$

$$B(x) = \cos\left(\frac{3\pi}{2} - 2\pi - x\right) - 2\sin\left(x - 2\pi\right) + 5\sin\left(x + \frac{5\pi}{2}\right)$$

$$C(x) = \sin\left(x + \frac{\pi}{2}\right) - 3\cos\left(-x + \frac{\pi}{2}\right) - 4\sin\left(\pi - x\right)$$

$$D = \tan\left(\frac{21\pi}{4}\right) + \tan\left(\frac{7\pi}{3}\right)$$

Solution:
$$A = \sin\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{3}\right) + \sin\left(\frac{\pi}{2}\right) + \sin\left(\frac{2\pi}{3}\right) + \sin\left(\frac{5\pi}{6}\right) + \sin\left(\pi\right)$$

$$A = \sin\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{3}\right) + \sin\left(\frac{\pi}{2}\right) + \sin\left(\pi - \frac{\pi}{3}\right) + \sin\left(\pi + \frac{\pi}{6}\right) + \sin\left(\pi\right)$$

$$A = \frac{1}{2} + \frac{\sqrt{3}}{2} + 1 + \frac{\sqrt{3}}{2} + \frac{1}{2} + 0 = 2 + \sqrt{3}$$

$$B(x) = \cos\left(\frac{3\pi}{2} - 2\pi - x\right) - 2\sin\left(x - 2\pi\right) + 5\sin\left(x + \frac{5\pi}{2}\right)$$

$$B(x) = \cos\left(-\frac{\pi}{2} - x\right) - 2\sin x + 5\sin\left(x + \frac{\pi}{2} + 2\pi\right)$$

$$B(x) = \cos\left(\frac{\pi}{2} + x\right) - 2\sin x + 5\sin\left(x + \frac{\pi}{2}\right)$$

$$B(x) = -\sin x - 2\sin x + 5\cos x = -3\sin x + 5\cos x$$

$$C(x) = \sin\left(x + \frac{\pi}{2}\right) - 3\cos\left(-x + \frac{\pi}{2}\right) - 4\sin\left(\pi - x\right)$$

$$C(x) = \cos x - 3\cos\left(\frac{\pi}{2} - x\right) - 4\sin x$$

$$C(x) = \cos x - 3\sin x - 4\sin x = \cos x - 7\sin x$$

$$D = \tan\left(\frac{21\pi}{4}\right) + \tan\left(\frac{7\pi}{3}\right) = \tan\left(5\pi + \frac{\pi}{4}\right) + \tan\left(2\pi + \frac{\pi}{3}\right) = \tan\frac{\pi}{4} + \tan\frac{\pi}{3} = 1 + \sqrt{3}$$

Exercice02: 3pts(2pts+1pts)

Soit
$$x \in \left[0; \frac{\pi}{2}\right]$$
 On pose: $E = 4\cos\left(\frac{\pi}{2} - x\right)\sin x + \sin\left(\frac{\pi}{2} - x\right)\cos^3 x$

- 1) Montrer que : $E = (2 \cos^2 x)^2$
- 2) Déterminer la valeur de E sachant que : $\tan x = \sqrt{7}$

Solution: 1)
$$E = 4\cos\left(\frac{\pi}{2} - x\right)\sin x + \sin\left(\frac{\pi}{2} - x\right)\cos^3 x$$
 et on a : $\sin\left(\frac{\pi}{2} - x\right) = \cos x$ et $\cos\left(\frac{\pi}{2} - x\right) = \sin x$

Donc: $E = 4 \sin x \sin x + \cos x \cos^3 x$

Donc: $E = 4\sin^2 x + \cos^4 x$

Donc: $E = 4(1-\cos^2 x) + \cos^4 x$ car on a: $\cos^2 x + \sin^2 x = 1$ c'est à dire: $\sin^2 x = 1 - \cos^2 x$

Donc: $E = 4 - 4\cos^2 x + \cos^4 x$

Donc: $E = (\cos^2 x)^2 - 2\cos^2 x \times 2 + 2^2$

Donc : $E = (\cos^2 x - 2)^2 = (2 - \cos^2 x)^2$

2) Déterminons la valeur de E sachant que : $\tan x = \sqrt{7}$

On sait que : $1 + \tan^2 x = \frac{1}{\cos^2 x}$ c'est-à-dire : $\cos^2 x = \frac{1}{1 + \tan^2 x}$

Donc: $\cos^2 x = \frac{1}{1+\sqrt{72}} = \frac{1}{1+7} = \frac{1}{8}$

Par suite: $E = (2 - \cos^2 x)^2 = (2 - \frac{1}{8})^2 = (\frac{15}{8})^2 = \frac{225}{64}$

Exercice03: 4pts(1,5pts+1,5pts+1pts) Soit x un réel tel que $\cos x \neq 0$

Montrer les égalités suivantes :

1)
$$\frac{\sin^2 x - \sin^4 x}{\cos^2 x - \cos^4 x} = 1$$
 2) $\frac{\cos^2 x}{\cos^2 x}$

1)
$$\frac{\sin^2 x - \sin^4 x}{\cos^2 x - \cos^4 x} = 1$$
 2) $\frac{\cos^3 x - \sin^3 x}{\cos x - \sin x} + \frac{\cos^3 x + \sin^3 x}{\cos x + \sin x} = 2$

3) $(1+\sin x + \cos x)^2 = 2(1+\sin x)(1+\cos x)$

Solution :1) $\frac{\sin^2 x - \sin^4 x}{\cos^2 x - \cos^4 x} = \frac{\sin^2 x (1 - \sin^2 x)}{\cos^2 x (1 - \cos^2 x)} = \frac{\sin^2 x \times (1 - \sin^2 x)}{\cos^2 x (1 - \cos^2 x)}$

Or on a: $\sin^2 x + \cos^2 x = 1$ donc: $\cos^2 x = 1 - \sin^2 x$ et $\sin^2 x = 1 - \cos^2 x$

Donc:
$$\frac{\sin^2 x - \sin^4 x}{\cos^2 x - \cos^4 x} = \frac{\sin^2 x (1 - \sin^2 x)}{\cos^2 x (1 - \cos^2 x)} = \frac{\sin^2 x \times \cos^2 x}{\cos^2 x \times \sin^2 x} = 1$$

2)
$$\frac{\cos^3 x - \sin^3 x}{\cos x - \sin x} + \frac{\cos^3 x + \sin^3 x}{\cos x + \sin x} = \frac{(\cos x - \sin x)(\cos^2 x + \cos x \sin x + \sin^2 x)}{\cos x - \sin x} + \frac{(\cos x + \sin x)(\cos^2 x - \cos x \sin x + \sin^2 x)}{\cos x + \sin x}$$
Car:
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2) \text{ et } a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

Donc: $\frac{\cos^3 x - \sin^3 x}{\cos x - \sin x} + \frac{\cos^3 x + \sin^3 x}{\cos x + \sin x} = \cos^2 x + \cos x \sin x + \sin^2 x + \cos^2 x - \cos x \sin x + \sin^2 x$

$$= 2\sin^2 x + 2\cos^2 x = 2(\sin^2 x + \cos^2 x) = 2 \times 1 = 2$$

3) Montrons que : $(1 + \sin x + \cos x)^2 = 2(1 + \sin x)(1 + \cos x)$

$$(1+\sin x + \cos x)^{2} = 1+\sin^{2} x + \cos^{2} x + 2\sin x + 2\cos x + 2\cos x \sin x$$

$$= 1+1+2\sin x + 2\cos x + 2\cos x \sin x$$

$$= 2(1+\sin x + \cos x + \cos x \sin x)$$

$$= 2((1+\sin x) + \cos x(1+\sin x))$$

$$= 2(1+\sin x)(1+\cos x)$$

Exercice04: 4pts(1pts+1,5pts+1,5pts) Résoudre dans \mathbb{R} les équations suivantes :

a)
$$2\sin x - 3 = 0$$

b)
$$\sin(2x) = \cos(3x)$$

b)
$$\sin(2x) = \cos(3x)$$
 c) $\tan\left(\frac{\pi}{4} - x\right) = -\sqrt{3}$

Solution: a) $2\sin x - 3 = 0$ Équivaut à : $2\sin x = 3$

Équivaut à :
$$\sin x = \frac{3}{2} \notin [-1;1]$$

Alors l'équation : $2\sin x - 3 = 0$ n'admet pas de solution dans $\mathbb R$ et on a : $S_{\mathbb R}$ = \varnothing .

b) On a :
$$\sin(2x) = \cos(3x)$$
 équivaut à : $\sin(2x) = \sin\left(\frac{\pi}{2} - 3x\right)$

Équivaut à :
$$2x = \frac{\pi}{2} - 3x + 2k\pi$$
 ou $2x = \pi - \left(\frac{\pi}{2} - 3x\right) + 2k\pi$ et $k \in \mathbb{Z}$

Équivaut à :
$$5x = \frac{\pi}{2} + 2k\pi$$
 ou $-x = \frac{\pi}{2} + 2k\pi$

Équivaut à :
$$x = \frac{\pi}{10} + \frac{2k\pi}{5}$$
 ou $x = -\frac{\pi}{2} + 2k\pi$ et $k \in \mathbb{Z}$

Donc les solutions de l'équation dans
$$\mathbb{R}$$
 sont : $S_{\mathbb{R}} = \left\{ \frac{\pi}{10} + \frac{2k\pi}{5} / k \in \mathbb{Z} \right\} \cup \left\{ -\frac{\pi}{2} + 2k\pi / k \in \mathbb{Z} \right\}$

c) On a :
$$\tan\left(\frac{\pi}{4} - x\right) = -\sqrt{3}$$
 équivaut à : $\tan\left(\frac{\pi}{4} - x\right) = -\tan\left(\frac{\pi}{3}\right)$

Équivaut à :
$$\tan\left(\frac{\pi}{4} - x\right) = -\tan\left(\frac{\pi}{3}\right)$$
 équivaut à : $\tan\left(\frac{\pi}{4} - x\right) = \tan\left(-\frac{\pi}{3}\right)$ Équivaut à : $\frac{\pi}{4} - x = -\frac{\pi}{3} + k\pi$

Équivaut à :
$$-x = -\frac{\pi}{3} - \frac{\pi}{4} + k\pi$$
 cad : $x = \frac{7\pi}{12} + k\pi$ et $k \in \mathbb{Z}$

Donc les solutions de l'équation dans
$$\mathbb{R}$$
 sont : $S_{\mathbb{R}} = \left\{ \frac{7\pi}{12} + k\pi / k \in \mathbb{Z} \right\}$

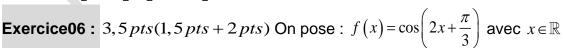
Exercice05:
$$(1,5 \, pts)$$
 Résoudre dans $[0;2\pi]$ l'inéquation suivante : $\sin x > -\frac{\sqrt{2}}{2}$

Solution: On sait que :
$$\sin\left(-\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$
 et $\sin\left(\frac{7\pi}{4}\right) = -\frac{\sqrt{2}}{2}$

L'arc
$$MM'$$
 en rouge correspond à tous les points $M(x)$ tel que :

x Vérifie
$$\sin x > -\frac{\sqrt{2}}{2}$$
 Donc : $\sin x \ge \frac{1}{2}$ Équivaut à : $\sin x \ge \sin \frac{\pi}{6}$

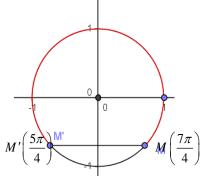
Donc:
$$S = \left[0; \frac{5\pi}{4}\right] \cup \left[\frac{7\pi}{4}; 2\pi\right]$$



1) Résoudre dans
$$]-\pi;\pi]$$
 l'équation $(E):f(x)=0$

2) En déduire le signe de :
$$f(x)$$
 dans $]-\pi;\pi]$

Solution:1)
$$f(x) = 0$$
 signifie que : $\cos\left(2x + \frac{\pi}{3}\right) = 0$



Équivaut à :
$$2x + \frac{\pi}{3} = \frac{\pi}{2} + k\pi$$
 Équivaut à : $2x = \frac{\pi}{2} - \frac{\pi}{3} + k\pi$

Équivaut à :
$$2x = \frac{\pi}{6} + k\pi$$
 Équivaut à : $x = \frac{\pi}{12} + \frac{k\pi}{2}$

Dans l'intervalle :
$$]-\pi$$
; π] les solutions sont : $\frac{\pi}{12}$; $\frac{\pi}{12} + \frac{\pi}{2} = \frac{7\pi}{12}$; $\frac{\pi}{12} - \frac{\pi}{2} = -\frac{5\pi}{12}$; $\frac{\pi}{12} - \pi = -\frac{11\pi}{12}$

Par conséquent :
$$S_{]-\pi;\pi]} = \left\{-\frac{11\pi}{12}; -\frac{5\pi}{12}; \frac{\pi}{12}; \frac{7\pi}{12}\right\}$$

2) Déduction du signe de : f(x) dans $]-\pi;\pi]$

• Sur l'inter valle :
$$-\pi$$
; $-\frac{11\pi}{12}$: on a : $-\pi < x < -\frac{11\pi}{12}$ donc : $-2\pi < 2x < -\frac{11\pi}{6}$

Donc:
$$-2\pi + \frac{\pi}{3} < 2x + \frac{\pi}{3} < -\frac{11\pi}{6} + \frac{\pi}{3}$$
 c'est-à-dire: $-\frac{7\pi}{3} < 2x + \frac{\pi}{3} < -\frac{3\pi}{2}$

Donc:
$$\cos\left(2x + \frac{\pi}{3}\right) > 0$$

• Sur l'inter valle :
$$\left| -\frac{11\pi}{12}; -\frac{5\pi}{12} \right|$$
 : on a : $-\frac{11\pi}{12} < x < -\frac{5\pi}{12}$ donc : $-\frac{11\pi}{6} < 2x < -\frac{5\pi}{6}$

Donc:
$$-\frac{11\pi}{6} + \frac{\pi}{3} < 2x + \frac{\pi}{3} < -\frac{5\pi}{6} + \frac{\pi}{3}$$
 c'est-à-dire: $-\frac{3\pi}{2} < 2x + \frac{\pi}{3} < -\frac{\pi}{2}$

Donc:
$$\cos\left(2x + \frac{\pi}{3}\right) < 0$$

• Sur l'inter valle :
$$\left| -\frac{5\pi}{12}; \frac{\pi}{12} \right|$$
 : on a : $-\frac{5\pi}{12} < x < \frac{\pi}{12}$ donc : $-\frac{5\pi}{6} < 2x < \frac{\pi}{6}$

Donc:
$$-\frac{5\pi}{6} + \frac{\pi}{3} < 2x + \frac{\pi}{3} < \frac{\pi}{6} + \frac{\pi}{3}$$
 c'est-à-dire: $-\frac{\pi}{2} < 2x + \frac{\pi}{3} < \frac{\pi}{2}$

Donc:
$$\cos\left(2x + \frac{\pi}{3}\right) > 0$$

• Sur l'inter valle :
$$\frac{\pi}{12}$$
; $\frac{7\pi}{12}$: on a : $\frac{\pi}{12} < x < \frac{7\pi}{12}$ donc : $\frac{\pi}{6} < 2x < \frac{7\pi}{6}$

Donc:
$$\frac{\pi}{6} + \frac{\pi}{3} < 2x + \frac{\pi}{3} < \frac{7\pi}{6} + \frac{\pi}{3}$$
 c'est-à-dire: $\frac{\pi}{2} < 2x + \frac{\pi}{3} < \frac{3\pi}{2}$

Donc:
$$\cos\left(2x + \frac{\pi}{3}\right) < 0$$

• Sur l'inter valle :
$$\left| \frac{7\pi}{12}; \pi \right|$$
 : on a : $\frac{7\pi}{12} < x < \pi$ donc : $\frac{7\pi}{6} < 2x < 2\pi$

Donc:
$$\frac{7\pi}{6} + \frac{\pi}{3} < 2x + \frac{\pi}{3} < 2\pi + \frac{\pi}{3}$$
 c'est-à-dire: $\frac{3\pi}{2} < 2x + \frac{\pi}{3} < \frac{7\pi}{3}$ et alors: $\cos\left(2x + \frac{\pi}{3}\right) > 0$

On peut alors résumer ces résultats dans un tableau de signe :

on pour diore recurrent con recurrence dante din tablead de eigne r													
	X	-π		11π		5π		π		7π		7	
				12		12		12		12		n	
	f(x)		+	0	-	0	+	0	-	0	+		

