http://www.xriadiat.com

DS5: S

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Correction: Devoir surveillé n°5/S sur: FONCTIONS - Généralités

Exercice01: 3.5 pts(1pts+1pts+1,5pts) Déterminer l'ensemble de définition de la fonction f dans les cas suivants :

1)
$$f(x) = \frac{-x+8}{4x^2-9}$$

2)
$$f(x) = \frac{|2x-5|}{|x|-2}$$
.

1)
$$f(x) = \frac{-x+8}{4x^2-9}$$
 2) $f(x) = \frac{|2x-5|}{|x|-2}$. 3) $f(x) = \sqrt{-2x(x-2)(x^2-8x+16)}$

Solution:1)
$$f(x) = \frac{-x+8}{4x^2-9}$$
; $D_f = \{x \in \mathbb{R} / 4x^2 - 9 \neq 0 \}$ signifie que : $D_f = \{x \in \mathbb{R} / 4x^2 \neq 9 \}$

Signifie que :
$$D_f = \left\{ x \in \mathbb{R} \mid x^2 \neq \frac{9}{4} \right\}$$
 signifie que : $D_f = \left\{ x \in \mathbb{R} \mid x \neq -\sqrt{\frac{9}{4}} \mid et \mid x \neq \sqrt{\frac{9}{4}} \right\}$

Donc:
$$D_f = \left\{ x \in \mathbb{R} / x \neq -\frac{3}{2} \ et \ x \neq \frac{3}{2} \right\}$$

D'où :
$$D_f = \mathbb{R} - \left\{ -\frac{3}{2}; \frac{3}{2} \right\}$$

2)
$$f(x) = \frac{|2x-5|}{|x|-2}$$
. $D_f = \{x \in \mathbb{R} / |x| - 2 \neq 0\}$

$$|x|-2=0$$
 Signifie $|x|=2$

Signifie
$$x=2$$
 ou $x=-2$

Donc:
$$D_f = \mathbb{R} - \{-2, 2\}$$

3)
$$f(x) = \sqrt{-2x(x-2)(x^2-8x+16)}$$
; $D_f = \{x \in \mathbb{R} / -2x(x-2)(x^2-8x+16) \ge 0 \}$

$$-2x(x-2)(x^2-8x+16) = 0$$
 Signifie que : $x^2-8x+16 = 0$ ou $x-2=0$ ou $x=0$

Signifie que :
$$x^2 - 8x + 16 = 0$$
 ou $x = 2$ ou $x = 0$

Pour déterminer le signe du trinôme : $x^2 - 8x + 16$

Calculons son discriminant :
$$a = 1$$
; $b = -8$; $c = 16$

Donc:
$$\Delta = b^2 - 4 \times a \times c = (-8)^2 - 4 \times 1 \times 16 = 64 - 64 = 0$$

Comme : Le coefficient principal est :
$$a = 1 > 0$$
 et $\Delta = 0$, alors : $x^2 - 8x + 16 \ge 0$

La racine double est :
$$x_1 = \frac{8}{2 \times 1} = 4$$

$$-2x(x-2)(x^2-8x+16)=0$$
 Signifie que : $x=4$ ou $x=2$ ou $x=0$

On obtient donc le tableau de signes suivant :

x	$-\infty$	0		2		4		$+\infty$
-2x	+	0	-		-		-	
x - 2	_		_	Ó	+		+	
$x^2 - 8x + 16$	+		+		+	Ó	+	
$-2x(x-2)(x^2 - 8x + 16)$	_	Ó	+	Ó	-	Ó	-	

PROF: ATMANI NAJIB

Par suite : $D_f = [0; 2]$

Exercice 02: 6.5 pts(0.5 pts + 1 pts + 1.5 pts + 1 pts + 1.5 pts)

Soit f une fonction tel que : $f(x) = \frac{-10x}{x^2 + 1}$ et soit (C_f) sa courbe représentative dans un repère

- 1) Déterminer D_f .
- 2) Montrer que la fonction f est impaire
- 3) Calculer f(-1) et Montrer que 5 est une valeur maximale de f sur $\mathbb R$
- 4) a) Soient $x_1 \in D_f$ et $x_2 \in D_f$ tel que : $x_1 \neq x_2$

Montrer que :
$$T(x_1; x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{10(x_1x_2 - 1)}{(1 + x_1^2)(1 + x_2^2)}$$

- b) En déduire la monotonie de la fonction f sur les intervalles I = [0;1] et $J = [1;+\infty[$.
- 5) Donner le tableau de variation de f sur R

Solution :1)
$$D_f = \{x \in E / f(x) \in \mathbb{R}\}$$

$$D_f = \{ x \in E / x^2 + 1 \neq 0 \}$$

$$x^2 + 1 = 0$$
 Signifie $x^2 = -1$

Cette équation n'admet pas de solution dans ${\mathbb R}$

Donc: x^2+1 ne s'annule jamais

Par suite :
$$D_f = \mathbb{R}$$

2)
$$f(x) = \frac{-10x}{x^2 + 1}$$

- si
$$x \in \mathbb{R}$$
, alors $-x \in \mathbb{R}$

-
$$f(-x) = \frac{-10(-x)}{(-x)^2 + 1} = -\frac{-10x}{x^2 + 1}$$
 Donc: $f(-x) = -f(x)$

Donc f est une fonction impaire,

3) Calculons
$$f(-1)$$
: $f(-1) = \frac{-10 \times (-1)}{(-1)^2 + 1} = \frac{10}{2} = 5$

Montrons que 5 est une valeur maximale de f sur ${\mathbb R}$

$$f(x) = \frac{-10x}{x^2 + 1}$$
: Soit $x \in \mathbb{R}$

$$f(x) - 5 = \frac{-10x}{x^2 + 1} - 5 = \frac{-10x - 5(x^2 + 1)}{x^2 + 1} = \frac{-10x - 5x^2 - 5}{x^2 + 1} = -5\frac{x^2 + 2x + 1}{x^2 + 1} = -5\frac{(x + 1)^2}{x^2 + 1}$$

Puisque :
$$-5\frac{(x+1)^2}{x^2+1} \le 0$$
 alors : $f(x) \le 5$ et on a aussi : $f(-1) = 5$

Alors:
$$f(x) \le f(-1)$$
 pour tout $x \in \mathbb{R}$

On conclut que : f(-1)=5 est une valeur maximale de f sur \mathbb{R}

4) a) Soient
$$x_1 \in D_f$$
 et $x_2 \in D_f$ tel que : $x_1 \neq x_2$

Montrons que :
$$T(x_1; x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{10(x_1 x_2 - 1)}{(1 + x_1^2)(1 + x_2^2)}$$

$$T(x_1; x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{\frac{-10x_1}{x_1^2 + 1} + \frac{10x_2}{x_2^2 + 1}}{x_1 - x_2} = \frac{\frac{-10x_1(x_2^2 + 1) + 10x_2(x_1^2 + 1)}{(1 + x_1^2)(1 + x_2^2)}}{x_1 - x_2}$$

$$T\left(x_{1}; x_{2}\right) = \frac{-10x_{1}\left(x_{2}^{2}+1\right)+10x_{2}\left(x_{1}^{2}+1\right)}{\left(1+x_{1}^{2}\right)\left(1+x_{2}^{2}\right)} \times \frac{1}{x_{1}-x_{2}} = \frac{-10x_{1}x_{2}^{2}-10x_{1}+10x_{2}x_{1}^{2}+10x_{2}}{\left(1+x_{1}^{2}\right)\left(1+x_{2}^{2}\right)} \times \frac{1}{x_{1}-x_{2}}$$

$$T(x_1; x_2) = \frac{10(-x_1x_2^2 - x_1 + x_2x_1^2 + x_2)}{(1 + x_1^2)(1 + x_2^2)} \times \frac{1}{x_1 - x_2} = \frac{10(x_2 - x_1 + x_1x_2(x_1 - x_2))}{(1 + x_1^2)(1 + x_2^2)} \times \frac{1}{x_1 - x_2}$$

$$T(x_1; x_2) = \frac{10(x_1x_2(x_1 - x_2) - (x_1 - x_2))}{(1 + x_1^2)(1 + x_2^2)} \times \frac{1}{x_1 - x_2} = \frac{10(x_1 - x_2)(x_1x_2 - 1)}{(1 + x_1^2)(1 + x_2^2)} \times \frac{1}{x_1 - x_2}$$

$$T(x_1; x_2) = \frac{10(x_1x_2 - 1)}{(1 + x_1^2)(1 + x_2^2)}$$

b)

• Déduction de la monotonie de la fonction f sur l'intervalle I = [0;1]

Soient: $x_1 \in [0;1]$ et $x_2 \in [0;1]$ tel que: $x_1 \neq x_2$

On a:
$$(1+x_1^2)(1+x_2^2)>0$$
 et $10>0$

Donc:
$$\begin{cases} 0 \le x_1 \le 1 \\ 0 \le x_2 \le 1 \end{cases}$$
 alors: $0 \le x_1 x_2 \le 1$

Donc: $x_1x_2 - 1 \le 0$ et puisque $x_1 \ne x_2$ alors: $0 \le x_1x_2 < 1$

D'où:
$$T(x_1; x_2) = \frac{10(x_1x_2 - 1)}{(1 + x_1^2)(1 + x_2^2)} < 0$$

Et par suite f est strictement décroissante sur I = [0;1]

• Déduction de la monotonie de la fonction f sur l'intervalle $J = [1; +\infty]$

On a:
$$(1+x_1^2)(1+x_2^2)>0$$
 et $10>0$

Soient:
$$x_1 \in [1; +\infty[$$
 et $x_2 \in [1; +\infty[$ tel que: $x_1 \neq x_2$

Donc:
$$\begin{cases} x_1 \ge 1 \\ x_2 \ge 1 \end{cases}$$
 alors: $x_1 x_2 \ge 1$

Donc: $x_1x_2 - 1 \ge 0$ et puisque $x_1 \ne x_2$ alors: $x_1x_2 - 1 > 0$

D'où:
$$T(x_1; x_2) = \frac{10(x_1x_2 - 1)}{(1 + x_1^2)(1 + x_2^2)} > 0$$

Et par suite f est strictement croissante sur $J = [1; +\infty[$

5) Le tableau de variation de f sur \mathbb{R} :

On a f est une fonction impaire

- ightharpoonup Puisque f est strictement décroissante sur I = [0;1] alors f l'est aussi sur I' = [-1;0]
- ho Puisque f est strictement croissante sur $J = [1; +\infty[$ alors f l'est aussi sur $J' =]-\infty;1]$

D'où, le tableau de variation de f

x	$-\infty$ -1 $1 +\infty$
f(x)	5_5

Exercice03:

10 pts(1 pts + 0.5 pts + 1.5 pts + 1 pts + 1.5 pts + 1 pts + 1 pts)

Soient f et g les deux fonctions définies par :

$$f(x) = -x^2 - 2x + 3$$
 et $g(x) = \frac{x-1}{x+2}$ et (C_f) et (C_g) Les courbes représentatives de f et g

- 1) Déterminer l'ensemble de définition des fonctions f et g
- 2) a) Vérifier que : $f(x) = -(x+1)^2 + 4$ si $x \in D_f$
- b) Vérifier que : $g(x) = 1 \frac{3}{x+2}$ si $x \in D_g$
- 3)a) Donner la nature de la courbe de f et ces éléments caractéristique
- b) Dresser le tableau de variation de f
- 4)a) Donner la nature de la courbe de g et ces éléments caractéristique
- b) Dresser le tableau de variation de g
- 5)a) Trouver les points d'intersection de la courbe (C_f) avec l'axe des abscisses
- b) Trouver le point d'intersection de la courbe $(C_{_{g}})$ avec l'axe des abscisses
- 6)Tracer Les courbes représentatives $(C_{_f})$ et $(C_{_g})$ dans le même repère
- 7)a) Résoudre graphiquement l'équation f(x) = g(x)
- b) Résoudre graphiquement l'inéquation $f(x) \ge g(x)$

Solution: 1)
$$f(x) = -x^2 - 2x + 3$$
 et $g(x) = \frac{x-1}{x+2}$

Dans l'expression de f(x) , x peut prendre n'importe quelle valeur réelle

Donc
$$D_{\!\scriptscriptstyle f}=\mathbb{R}$$

Tandis que pour : g(x), x ne doit pas prendre de valeur telle que : x+2=0 soit x=-2

Donc:
$$D_g = \mathbb{R} - \{-2\} =]-\infty; -2[\cup]-2; +\infty[$$

2) a) Vérifions que : $f(x) = -(x+1)^2 + 4$ si $x \in \mathbb{R}$

$$f(x) = -x^2 - 2x + 3 = -(x^2 + 2x) + 3 = -(x^2 + 2x + 1^2 - 1^2) + 3 = -((x+1)^2 - 1) + 3 = -(x+1)^2 + 1 + 3 = -(x+1)^2 + 4 = -(x+1)^2 + 3 = -(x+1)^2 + 3$$

Donc: $f(x) = -(x+1)^2 + 4$ (la forme canonique)

b) Vérifions que : $g(x) = 1 - \frac{3}{x+2}$ si $x \in \mathbb{R} - \{-2\}$

Soit:
$$x \in \mathbb{R} - \{-2\}$$
; $1 - \frac{3}{x+2} = \frac{1(x+2)-3}{x+2} = \frac{x+2-3}{x+2} = \frac{x-1}{x+2} = g(x)$ (La forme réduite)

3)a) On utilisant un résumé de notre cours :

Rappelle: $f(x) = a(x+\alpha)^2 + \beta$ (forme canonique)

Dans un repère $(0; \vec{i}; \vec{j})$ la courbe (C_f) c'est une parabole de sommet $W(-\alpha; \beta)$ et d'axe de symétrie la droite $x = -\alpha$

PROF: ATMANI NAJIB

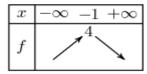
Dans notre exercice on a : $f(x) = -(x+1)^2 + 4$ (la forme canonique) : $\alpha = 1$ et $\beta = 4$

Dans un repère $\left(0;\vec{i}\;;\vec{j}\;\right)$ la courbe $\left(C_{f}\;\right)$ c'est une parabole de sommet $W\left(-\alpha;eta
ight)$ c'est-à-dire :

W(-1;4) et d'axe de symétrie la droite : $x = -\alpha = 1$

b) Le tableau de variations de f :

Dans notre exercice on a : $-\alpha = -1$ et $\beta = 4$ et $a = -1 < 0^*$



4)a) On utilisant un résumé de notre cours :

Rappelle : Si : $g(x) = \beta + \frac{k}{x + \alpha}$ alors (C_g) est une hyperbole de centre $\Omega(-\alpha; \beta)$ et d'asymptotes

les droites d'équations : $x = -\alpha$ et $y = \beta$

Dans notre exercice on a : $g(x) = 1 - \frac{3}{x+2}$ si $x \in \mathbb{R} - \{-2\}$ donc : $\alpha = 2$ et $\beta = 1$ et k = -3 < 0

Donc $\left(C_{g}\right)$ est une hyperbole de centre $\Omega\left(-2;1\right)$ et d'asymptotes les droites d'équations :

$$x = -2$$
 et $y = 1$

b)Et puisque : k = -3 < 0 alors : g est strictement croissante sur les intervalles :

$$]-\infty;-2[$$
 et $]-2;+\infty[$

Donc le tableau de variations de g:

x	$-\infty$ –	$2+\infty$
g(x)	1	1

5)a) Intersection de la courbe $(C_{\scriptscriptstyle f})$ avec l'axe des abscisses

Les points d'intersection C et D de la courbe (C_f) avec l'axe des abscisses ont leurs ordonnées nulles, et leurs abscisses sont les solutions de l'équation f(x) = 0.

$$f(x) = 0 \iff -x^2 - 2x + 3 = 0$$
 $\Delta = b^2 - 4ac = (-2)^2 - 4 \times 3 \times (-1) = 4 + 11 = 16 > 0$

$$x_1 = \frac{-(-2) + \sqrt{16}}{2 \times (-1)} = \frac{2+4}{-2} = \frac{6}{-2} = -3 \text{ et } x_2 = \frac{-(-2) - \sqrt{16}}{2 \times (-1)} = 1$$

Donc : les points d'intersection de la courbe (C_f) avec l'axe des abscisses sont : A(-3;0) et B(1;0)

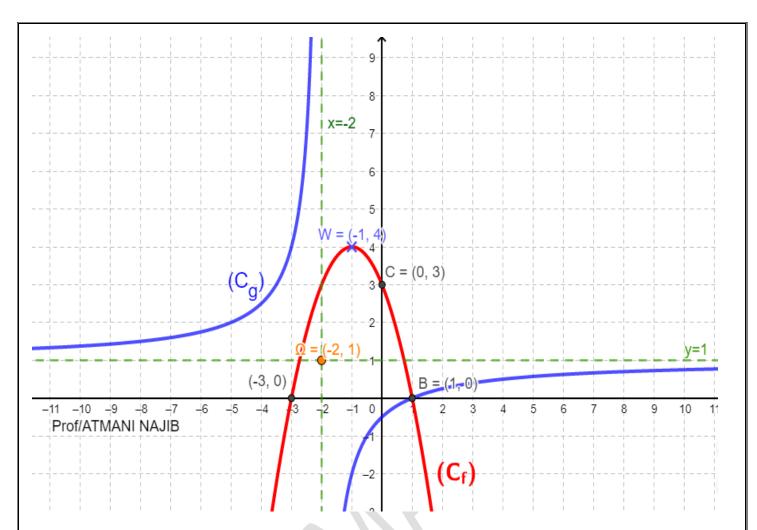
b) Intersection de la courbe (C_g) avec l'axe des abscisses :

$$g(x) = 0 \Leftrightarrow \frac{x-1}{x+2} = 0 \Leftrightarrow x-1 = 0 \Leftrightarrow x = 1$$

Le point d'intersection de la courbe $\left(C_{_g}\right)$ avec l'axe des abscisses est : C(1;0)

<u>6)Représentation graphique : Les</u> courbes représentatives (C_f) (en rouge) et (C_g) (en bleu) sont données dans le repère ci-dessous

PROF: ATMANI NAJIB



7) a) Résolution graphique de l'équation f(x) = g(x):

Il suffit de chercher les abscisses des points d'intersection des courbes $\left(C_{_f}\right)$ et $\left(C_{_g}\right)$

On a donc: x=1 par suite: $S = \{1\}$

7)b) Résolution graphique de l'inéquation $f(x) \ge g(x)$:

La courbe (C_f) est au-dessus de (C_g) si $x \in]-2;1]$ Donc S =]-2;1]

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

