http://www.xriadiat.com

DS5: U

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Correction: Devoir surveillé n°5 /U sur: FONCTIONS - Généralités

Exercice 01: 4.5 pts(1 pts + 1 pts + 1 pts + 1, 5 pts)

Soit la fonction f définie par : $f(x) = \sqrt{4+x} \times \sqrt{6-x}$

- 1)a) Déterminer D_f
- b) Calculer: f(0); f(-3)
- c) Déterminer les antécédents de 1 par f (s'ils existent)
- 4) On considère la fonction g définie par : $g(x) = \sqrt{-x^2 + 2x + 24}$ Montrer que : f = g

Solution: 1) a) $D_f = \{x \in \mathbb{R} / 4 + x \ge 0 \ et \ 6 - x \ge 0\}$

$$D_f = \{x \in \mathbb{R} \mid x \ge -4 \ et \ x \le 6\}$$
 Donc $D_f = [-4, 6]$

b) Calcul des images :

$$f(0) = \sqrt{4+0} \times \sqrt{6-0} = \sqrt{4} \times \sqrt{6} = 2\sqrt{6}$$
 et $f(-3) = \sqrt{4-3} \times \sqrt{6+3} = \sqrt{1} \times \sqrt{9} = 3$

c) x est l'antécédents de 1 par f signifie que 1 est l'image de x par f .

Équivaut à : chercher les réels x tels que : f(x)=1

On résout alors dans \mathbb{R} l'équation f(x)=1

Équivaut à : $\sqrt{4+x} \times \sqrt{6-x} = 0$ Équivaut à : (4+x)(6-x)=1 Équivaut à : $24-4x+6x-x^2=1$

Équivaut à : $-x^2 + 2x + 23 = 0$

$$\Delta = b^2 - 4ac = 4 + 4 \times (-23) = 4 + 92 = 96 > 0 \quad x_1 = \frac{-2 + \sqrt{96}}{2 \times -1} = \frac{2 - \sqrt{96}}{2} \quad \text{et} \quad x_1 = \frac{-2 - \sqrt{96}}{2 \times -1} = \frac{2 + \sqrt{96}}{2}$$

- Finalement les antécédents de 1 par f sont : $\frac{2-\sqrt{96}}{2}$ et $\frac{2+\sqrt{96}}{2}$
- 4) On considère la fonction g définie par : $g(x) = \sqrt{-x^2 + 2x + 24}$

$$D_g = \left\{ x \in \mathbb{R} / -x^2 + 2x + 24 \ge 0 \right\}$$

Soit
$$\triangle$$
 son discriminant : $\triangle = b^2 - 4ac = 2^2 - 4 \times 24 \times -1 = 4 + 96 = 100 > 0$

$$x_1 = \frac{-2 + \sqrt{100}}{2 \times -1} = \frac{8}{-2} = -4$$
 et $x_2 = \frac{-2 - \sqrt{100}}{2 \times -1} = \frac{-12}{-2} = 6$

x	$-\infty$	-4		6	$+\infty$
$-x^2+2x+24$	_	þ	+	þ	_

Donc
$$D_g = [-4, 6]$$

On a donc : $D_f = D_g$.

$$f(x) = \sqrt{4+x} \times \sqrt{6-x} = \sqrt{(4+x)(6-x)} = \sqrt{-x^2+2x+24} = g(x)$$

Conclusion : f = g

Exercice 04:
$$6pts(0.5pts+1pts+0.5pts+1pts+1pts+1pts+1pts)$$

Soit la fonction f définie par : $f(x) = -\frac{1}{2}(|2x+3|+|2x-3|)$

- 1) Déterminer le domaine de définition de f
- 2) a) Etudier la parité de la fonction f et en déduire le domaine d'étude de f

PROF: ATMANI NAJIB

- b) Donner une interprétation graphique
- 3) Simplifier l'écriture de f dans les intervalles $I = \left[0; \frac{3}{2}\right]$ et $J = \left[\frac{3}{2}; +\infty\right]$
- 4) Calculer: $f\left(\frac{3}{2}\right)$; $f\left(-\frac{3}{2}\right)$
- 5) Dresser son tableau de variation sur D_f
- 6) Tracer la courbe (C_f) dans un repère $(0;\vec{i};\vec{j})$ orthonormé

Solution :1) Un réel a toujours une image. Donc $D_f = \mathbb{R}$

2)a) - Pour tout réel x, si $x \in \mathbb{R}$, alors $-x \in \mathbb{R}$

-
$$f(-x) = -\frac{1}{2}(|-2x+3|+|-2x-3|) = -\frac{1}{2}(|-(2x-3)|+|-(2x+3)|)$$

$$f(-x) = -\frac{1}{2}(|2x-3|+|2x+3|)$$
 Car $|-x|=|x|$

Donc: f(-x) = f(x) par suite: f est une fonction paire,

Donc : la droite des ordonnées est un axe de symétrie de (C_f)

Il suffit donc de l'étudier sur $D_{\scriptscriptstyle f} \cap \mathbb{R}^{\scriptscriptstyle +}$

Par suite le domaine d'étude de f est : $D_{\scriptscriptstyle E}$ = \mathbb{R}^+

b) Interprétation graphique : l'axe des ordonnées est un axe symétrie de la courbe représentative

3)
$$f(x) = -\frac{1}{2}(|2x+3|+|2x-3|)$$

Si
$$x \in I = \left[0; \frac{3}{2}\right]$$
 alors : $0 \le x \le \frac{3}{2}$

Donc:
$$0 \le 2x \le 3$$
 c'est-à-dire: $2x-3 \le 0$ et on a: $2x+3 \ge 0$

Par suite :
$$f(x) = -\frac{1}{2}(2x+3+(-(2x-3))) = -\frac{1}{2}(2x+3-2x+3) = -3$$

Si
$$x \in J = \left[\frac{3}{2}; +\infty\right]$$
 alors: $x \ge \frac{3}{2}$

Donc:
$$2x \ge 3$$
 c'est-à-dire: $2x-3 \ge 0$ et on a: $2x+3 \ge 0$

Par suite:
$$f(x) = -\frac{1}{2}(|2x+3|+|2x-3|) = -\frac{1}{2}(2x+3+|2x-3|) = -\frac{1}{2}(4x) = -2x$$

Finalement on a :
$$\begin{cases} f(x) = -3 \text{ si } x \in I = \left[0; \frac{3}{2}\right] \\ f(x) = -2x \text{ si } x \in J = \left[\frac{3}{2}; +\infty\right] \end{cases}$$

4)
$$f\left(\frac{3}{2}\right) = -\frac{1}{2}\left(\left|2 \times \frac{3}{2} + 3\right| + \left|2 \times \frac{3}{2} - 3\right|\right) = -\frac{1}{2}(6 + 0) = -3$$

$$f\left(-\frac{3}{2}\right) = f\left(\frac{3}{2}\right) = -3$$
 Car :f est une fonction paire

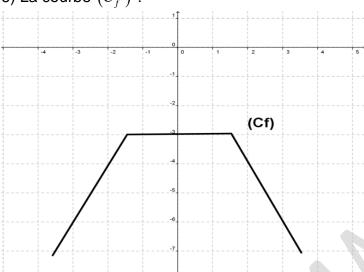
5) le tableau de variation sur ${\mathbb R}$

On a : f est constante sur l'intervalle :
$$I = \left[0; \frac{3}{2}\right]$$
 et décroissante dans : $J = \left[\frac{3}{2}; +\infty\right]$

Et puisque f est une fonction paire alors f est constante sur l'intervalle : $I' = \left[-\frac{3}{2}; 0 \right]$ et f est croissante dans $J' = \left[-\infty; -\frac{3}{2} \right]$ d'où le tableau de variation suivant :

x	$-\infty$ $-\frac{3}{2}$	0	$\frac{3}{2}$	$+\infty$
f(x)	3	3	→ -3	/

6) La courbe (C_f) :



Exercice 06:

 $10,5\,pts(1\,pts+0,5\,pts+1\,pts+0,5\,pts+0,5\,pts+1\,pts+1\,pts+1\,pts+1,5\,pts+0,5\,pts+1\,pts+1\,pts)$

PROF: ATMANI NAJIB

Soit g la fonction définie par : $g(x) = \frac{1}{2-x}$ et (C_g) La courbe représentative de g

- 1) a) Déterminer la nature de $(C_{_{\varrho}})$ et ses éléments caractéristiques.
- b) Déterminer le tableau de variation de g
- c) Tracer la courbe $\left(C_{_g}\right)$ dans un repère $\left(O\,;\vec{i}\,;\vec{j}\,\right)$
- 2) a) Résoudre dans \mathbb{R} les équations : g(x) = x et g(x) = 1 + x
- b) Donner une interprétation graphique des résultats
- c) Déterminer le signe de : $m^2 + 4m$
- d) Déterminer les valeurs de m ou la courbe (C_s) coupe la droite d'équation :

y = x + m en deux points

- 3) On considère la fonction f tel que : $f(x) = \frac{2x}{x^2 x + 1}$
- a) Déterminer D_f
- b) Montrer: $f(x)-f(y)=2(x-y)\frac{1-xy}{(x^2-x+1)(y^2-y+1)}$ si $x \in \mathbb{R}$ et $y \in \mathbb{R}$
- c) En déduire la monotonie de f dans : $\begin{bmatrix} -1;1 \end{bmatrix}$ et $\begin{bmatrix} 1;+\infty \end{bmatrix}$
- d) Calculer: $f(x) + \frac{2}{3}$ puis en déduire que $-\frac{2}{3} \le f(x)$; si $x \in \mathbb{R}$

e) Montrer que : si $x \in \mathbb{R}$ alors : $-\frac{2}{3} \le f(x) \le 2$

Solution:1) a) Déterminons la nature de (C_g) et ses éléments caractéristiques : $g(x) = \frac{1}{2-x}$

On a $g(x) \in \mathbb{R} \iff 2 - x \neq 0 \iff x \neq 2$

 $\mathsf{Donc}:\ D_{\scriptscriptstyle g} = \mathbb{R} - \big\{2\big\} = \big] - \infty; 2\big[\, \cup \, \big]2; + \infty\big[$

En générale si : $g(x) = \frac{ax+b}{cx+d}$ et $c \neq 0$ alors (C_g) est une hyperbole de centre $W\left(-\frac{d}{c}; \frac{a}{c}\right)$ et

d'asymptotes les droites d'équations : $x = -\frac{d}{c}$ et $y = \frac{a}{c}$

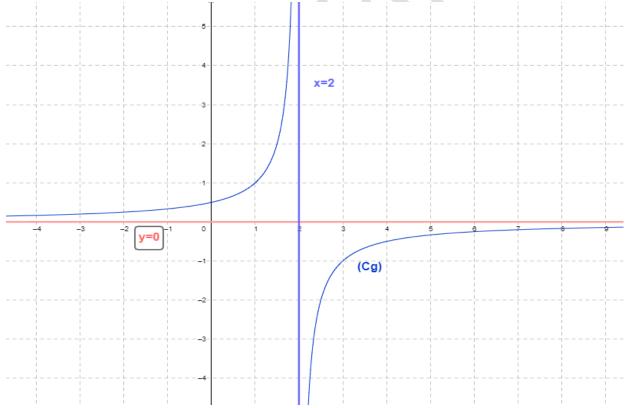
Dans notre exercice on a : $g(x) = \frac{1}{2-x} = \frac{0x+1}{(-1)x+2}$ donc (C_g) est une hyperbole de centre W(2;0)

et d'asymptotes les droites d'équations x=2 et y=0

b) $g(x) = \frac{1}{2-x}$ on a: $\Delta = \begin{vmatrix} 0 & 1 \\ -1 & 2 \end{vmatrix} = 1 > 0$ g est strictement croissante sur les intervalles :

]2;
$$+\infty$$
[et] $-\infty$; 2[

x	$-\infty$ 2	2 +∞
g(x)	1	1



2) a) Résolution dans \mathbb{R} des équations : g(x) = x et g(x) = 1 + x

$$g(x) = x \Leftrightarrow \frac{1}{2-x} = x \Leftrightarrow x(2-x) = 1 \Leftrightarrow x^2 - 2x + 1 = 0 \Leftrightarrow (x-1)^2 = 0 \Leftrightarrow x = 1$$

Donc: $S_1 = \{1\}$

$$g(x) = 1 + x \Leftrightarrow \frac{1}{2 - x} = 1 + x \Leftrightarrow (1 + x)(2 - x) = 1 \Leftrightarrow x^2 - x - 1 = 0$$

$$\Delta = b^2 - 4ac = 1^2 + 4 = 5 > 0$$
 et $x_1 = \frac{-(-1) + \sqrt{5}}{2 \times 1} = \frac{1 + \sqrt{5}}{2}$ et $x_2 = \frac{-(-1) - \sqrt{5}}{2 \times 1} = \frac{1 - \sqrt{5}}{2}$

Donc:
$$S_2 = \left\{ \frac{1 - \sqrt{5}}{2}; \frac{1 + \sqrt{5}}{2} \right\}$$

b) interprétation graphique des résultats :

• Pour l'équation : g(x) = x

La courbe (C_g) coupe la droite d'équation : y = x en un point c'est : A(1;1)

• Pour l'équation : g(x) = 1 + x

La courbe (C_g) coupe la droite d'équation : y = x + 1 en deux points : $B\left(\frac{1-\sqrt{5}}{2}; \frac{1-\sqrt{5}}{2} + 1\right)$ et

$$C\left(\frac{1+\sqrt{5}}{2}; \frac{1+\sqrt{5}}{2}+1\right)$$
 c'est-à-dire : $B\left(\frac{1-\sqrt{5}}{2}; \frac{3-\sqrt{5}}{2}\right)$ et $C\left(\frac{1+\sqrt{5}}{2}; \frac{3+\sqrt{5}}{2}\right)$

c) Détermination du signe de : $m^2 + 4m$

m	$-\infty$	-4		0	+∞
m2+4m	+	Ò	_	ģ	+

d) Détermination des valeurs de m pour que la courbe (C_g) coupe la droite d'équation : y = x + m en deux points : Résolution algébrique de l'équation g(x) = x + m

$$g(x) = x + m \iff \frac{x - 3}{x + 1} = x + m \iff 2m + 2x - x^2 - xm = 1 \iff x^2 + (m - 2)x - 2m + 1 = 0$$

$$\Delta = b^2 - 4ac = (m-2)^2 - 4 \times 1 \times (-2m+1) = m^2 + 4m$$

Donc : $\Delta = m^2 + 4m > 0$ signifie que : $m \in]-\infty; -4[\ \cup\]0; +\infty[$

Donc: l'équation g(x) = x + m admet 2 solutions si et seulement si : $m \in]-\infty; -4[\cup]0; +\infty[$

Donc : les valeurs de m pour que la courbe (C_g) coupe la droite d'équation : y=x+m en deux points sont : $m \in]-\infty; -4[\, \cup\,]0; +\infty[$

- 3) On considère la fonction f tel que : $f(x) = \frac{2x}{x^2 x + 1}$
- a) Détermination de D_f

$$D_f = \left\{ x \in \mathbb{R} / x^2 - x + 1 \neq 0 \right\}$$

Le discriminant est $\Delta = b^2 - 4ac = (-1)^2 - 4 \times 1 \times 1 = 1 - 4 = -3 < 0$

Donc : Pas de racines par suite : $D_f = \mathbb{R}$

b) Calculons: f(x)-f(y) si $x \in \mathbb{R}$ et $y \in \mathbb{R}$

$$f(x)-f(y) = \frac{2x}{x^2-x+1} - \frac{2y}{y^2-y+1} = \frac{2x(y^2-y+1)-2y(x^2-x+1)}{(x^2-x+1)(y^2-y+1)} = 2\frac{xy^2-xy+x-yx^2+xy-y}{(x^2-x+1)(y^2-y+1)}$$

$$=2\frac{xy^2-yx^2+x-y}{(x^2-x+1)(y^2-y+1)}=2\frac{xy(y-x)-(y-x)}{(x^2-x+1)(y^2-y+1)}=2(y-x)\frac{xy-1}{(x^2-x+1)(y^2-y+1)}$$

Donc: $f(x)-f(y) = 2(x-y)\frac{1-xy}{(x^2-x+1)(y^2-y+1)}$

c) En déduire la monotonie de f dans: $\begin{bmatrix} -1;1 \end{bmatrix}$ et $\begin{bmatrix} 1;+\infty \end{bmatrix}$

On a:
$$f(x)-f(y) = 2(x-y)\frac{1-xy}{(x^2-x+1)(y^2-y+1)}$$
 donc: $\frac{f(x)-f(y)}{x-y} = 2\frac{1-xy}{(x^2-x+1)(y^2-y+1)}$

Pour: $x^2 - x + 1$ et $y^2 - y + 1$; $\Delta = 1 - 4 < 0$ donc: $x^2 - x + 1 > 0$ et $y^2 - y + 1 > 0$

Si:
$$x \in [-1,1] \Rightarrow -1 \le x \le 1 \Rightarrow |x| \le 1$$
 (1) et $y \in [-1,1] \Rightarrow -1 \le y \le 1 \Rightarrow |y| \le 1$ (2)

(1) et(2)
$$\Rightarrow$$
 $|x||y| \le 1 \Rightarrow |xy| \le 1 \Rightarrow -1 \le xy \le 1 \Rightarrow 0 \le 1 - xy$

Donc: $\frac{f(x)-f(y)}{x-y} \ge 0$ par suite f est croissante sur [-1;1]

Si:
$$x \in [1; +\infty[\Rightarrow x \ge 1 \quad (1) \text{ et } y \in [1; +\infty[\Rightarrow y \ge 1 \quad (2)]$$

(1) et (2)
$$\Rightarrow xy \ge 1 \Rightarrow 1 - xy \le 0$$

Donc: $\frac{f(x)-f(y)}{x-y} \le 0$ par suite f est décroissante sur $[1;+\infty[$

d) Calcul de : $f(x) + \frac{2}{3}$ puis l'étude de son signe :

$$f(x) + \frac{2}{3} = \frac{2x}{x^2 - x + 1} + \frac{2}{3} = \frac{6x + 2x^2 - 2x + 2}{3(x^2 - x + 1)} = \frac{2x^2 + 4x + 2}{3(x^2 - x + 1)} = \frac{2(x^2 + 2x + 1)}{3(x^2 - x + 1)} = \frac{2(x + 1)^2}{3(x^2 - x + 1)} \ge 0$$

Car: $x^2 - x + 1 > 0$ et $(x+1)^2 \ge 0$

Par suite : $\forall x \in \mathbb{R}$: $f(x) + \frac{2}{3} \ge 0$ c'est-à-dire : $-\frac{2}{3} \le f(x)$ 1 ; $\forall x \in \mathbb{R}$

e) Montrons que : $\forall x \in \mathbb{R} -\frac{2}{3} \le f(x) \le 2$

On a : $-\frac{2}{3} \le f(x)$ 1 ; $\forall x \in \mathbb{R}$. Montrons que : $\forall x \in \mathbb{R}$ $f(x) \le 2$

$$2 - f(x) = 2 - \frac{2x}{x^2 - x + 1} = 2\left(1 - \frac{x}{x^2 - x + 1}\right) = 2\frac{x^2 - x + 1 - x}{\left(x^2 - x + 1\right)} = 2\frac{x^2 - 2x + 1}{\left(x^2 - x + 1\right)} = \frac{2\left(x - 1\right)^2}{\left(x^2 - x + 1\right)} \ge 0$$

Car: $x^2 - x + 1 > 0$ et $(x-1)^2 \ge 0$

Par suite : $\forall x \in \mathbb{R}$: $2-f(x) \ge 0$ c'est-à-dire : $f(x) \le 2$ 2 ; $\forall x \in \mathbb{R}$

1 et 2
$$\Rightarrow \forall x \in \mathbb{R}$$
; $-\frac{2}{3} \le f(x) \le 2$

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

