http://www.xriadiat.com

DS6: C

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Correction: Devoir surveiller n°6/C sur les leçons suivantes:

- ✓ Les Transformations du plan
- ✓ PRODUIT SCALAIRE
- √ Géométrie dans l'espace

La correction voir http://www.xriadiat.com/

Exercice01 : 3pts(1pts + 0.5pts + 1.5pts)

Soient trois points fixes A; B et C du plan

Soit *E* un point du plan tel que : $\overrightarrow{EA} - \overrightarrow{EB} + \overrightarrow{EC} = \vec{0}$

- 1) Montrer que : E est l'image du point A par la translation de vecteur \overrightarrow{BC}
- 2)a) Faire une figure
- b) Représenter le point : F est l'image du point B par la translation de vecteur \overrightarrow{AC}

Et Montrer que : C est le milieu [EF]

Solution : 1) On a : $\overrightarrow{EA} - \overrightarrow{EB} + \overrightarrow{EC} = \overrightarrow{0}$ Signifie que : $\overrightarrow{EA} + \overrightarrow{BE} + \overrightarrow{EC} = \overrightarrow{0}$

Signifie que : $\overrightarrow{EA} + \overrightarrow{BC} = \overrightarrow{0}$

Signifie que : $\overrightarrow{AE} = \overrightarrow{BC}$ c'est-à-dire BCEA est un parallélogramme

Par suite : $t_{\overline{BC}}(A) = E$

2)a) la figure

On a : F est l'image du point B par la translation de vecteur \overrightarrow{AC} donc :

 $t_{\overrightarrow{AC}}(B) = F$

C'est-à-dire : $\overrightarrow{AC} = \overrightarrow{BF}$ donc \overrightarrow{ACFB} est un parallélogramme par suite : $\overrightarrow{AB} = \overrightarrow{CF}$ (1)

On a aussi : BCEA est un parallélogramme donc : $\overrightarrow{EC} = \overrightarrow{AB}$ (2)

De (1) et (2) on obtient : $\overrightarrow{EC} = \overrightarrow{CF}$

Par conséquent : C est le milieu [EF]

Exercice02: (1,5 pts) Soit l'homothétie h de centre A et qui transforme B en C et $\overrightarrow{BC} = \frac{1}{2} \overrightarrow{AB}$

Déterminer le rapport k de l'homothétie h

Solution: soit h(A,k) l'homothétie h de centre A et de rapport k et h(B) = C

h(B) = C Equivaut à : $\overrightarrow{AC} = k\overrightarrow{AB}$

 $\overrightarrow{BC} = \frac{1}{2}\overrightarrow{AB}$ Equivaut à : $2\overrightarrow{BC} = \overrightarrow{AB}$

Equivaut à : $2(\overrightarrow{BA} + \overrightarrow{AC}) = \overrightarrow{AB}$ Equivaut à : $2\overrightarrow{BA} + 2\overrightarrow{AC} = \overrightarrow{AB}$ Equivaut à : $2\overrightarrow{AC} = \overrightarrow{AB} - 2\overrightarrow{BA}$

Equivaut à : $2\overrightarrow{AC} = \overrightarrow{AB} + 2\overrightarrow{AB}$ Equivaut à : $2\overrightarrow{AC} = 3\overrightarrow{AB}$ Equivaut à : $\overrightarrow{AC} = \frac{3}{2}\overrightarrow{AB}$

Equivaut à : $k = \frac{3}{2}$ donc $h\left(A, \frac{3}{2}\right)$: le rapport de l'homothétie h est : $k = \frac{3}{2}$

Exercice03: 5,5 pts(1 pts + 1 pts + 1,5 pts + 1 pts + 1 pts)

Soit \overrightarrow{ABC} un triangle isocèle en \overrightarrow{B} tel que : $\overrightarrow{BA} \cdot \overrightarrow{BC} = 12$ et $\cos(\overrightarrow{ABC}) = \frac{1}{3}$ et \overrightarrow{J} un point tel que :

 $\overrightarrow{BJ} = \frac{5}{4} \overrightarrow{BA}$ et I le milieu du segment [AC] et soit la droite (Δ) qui passe par J

et perpendiculaire à la droite (AB) et soit E un point tel que : $E \in (\Delta)$ et soit $M \in (\Delta)$

1) a) Montrer que : AB = 6 b) Calculer AC

2) Calculer: BJ · BA

3) Montrer que : $\overrightarrow{MB} \cdot \overrightarrow{AB} = 45$

4) Calculer: BI

Solution : 1) On a : $\overrightarrow{BA} \cdot \overrightarrow{BC} = 12$

Donc: $\|\overrightarrow{BA}\| \times \|\overrightarrow{BC}\| \times \cos \hat{B} = 12$

Donc: $BA \times BC \times \cos B = 12$

C'est-à-dire : $AB^2 \times \frac{1}{2} = 12$

Donc: $AB^2 = 36$ c'est-à-dire: AB = 6

b) D'après le Théorème d'Al Kashi dans ABC

On a : $AC^2 = AB^2 + BC^2 - 2AB \times BC \cos B$

Donc:
$$AC^2 = 36 + 36 - 2 \times 36 \times \frac{1}{3}$$

Donc: $AC^2 = 54$ c'est-à-dire: $AC = \sqrt{54}$

2)
$$\overrightarrow{BJ} \cdot \overrightarrow{BA} = \frac{5}{2} \overrightarrow{BA} \cdot \overrightarrow{BA} = \frac{5}{2} \overrightarrow{BA}^2 = \frac{5}{2} \times 36 = 45$$

3)
$$\overrightarrow{MB} \cdot \overrightarrow{AB} = (\overrightarrow{MJ} + \overrightarrow{JB}) \cdot \overrightarrow{AB} = \overrightarrow{MJ} \cdot \overrightarrow{AB} + \overrightarrow{JB} \cdot \overrightarrow{AB}$$

On a : $\overrightarrow{MJ} \cdot \overrightarrow{AB} = 0$ car $\overrightarrow{MJ} \perp \overrightarrow{AB}$

Donc:
$$\overrightarrow{MB} \cdot \overrightarrow{AB} = \overrightarrow{JB} \cdot \overrightarrow{AB} = (-\overrightarrow{BJ}) \cdot (-\overrightarrow{BA}) = \overrightarrow{BJ} \cdot \overrightarrow{BA} = 45$$

4) D'après le théorème de la médiane dans ABC

On a:
$$AB^2 + BC^2 = 2BI^2 + \frac{1}{2}AC^2$$

Donc:
$$6^2 + 6^2 = 2BI^2 + \frac{1}{2}\sqrt{54}^2$$

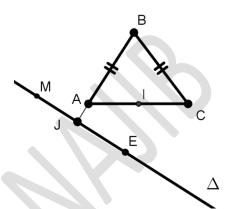
Donc: $72 = 2BI^2 + 27$ c'est-à-dire: $BI^2 = \frac{45}{2}$

Par suite :
$$BI = \sqrt{\frac{45}{2}}$$

Exercice04: 7 pts(1,5 pts+1,5 pts+1,5 pts+2,5)

Soit ABCD un carré de centre I et a la longueur de son côté ; on construit à l'extérieur un triangle équilatérale *BCE* (Voir figure)

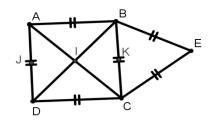
1) Soit J le milieu du segment AD et K le milieu du segment BC



Calculer $\overrightarrow{IJ} \cdot \overrightarrow{IC}$ en fonction de a

2) a) Montrer que :
$$\overrightarrow{IB} \cdot \overrightarrow{IE} = \left(\frac{1+\sqrt{3}}{4}\right)a^2$$

b) En déduire que :
$$\overrightarrow{BI} \cdot \overrightarrow{BE} = \left(\frac{1 - \sqrt{3}}{4}\right)a^2$$



3) En utilisant les résultats de la question

Montrer que
$$\cos\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2} - \sqrt{6}}{4}$$
 Et en déduire : $\sin\frac{7\pi}{12}$ et $\tan\frac{7\pi}{12}$

Solution : 1) Calcul de $\overrightarrow{IJ} \cdot \overrightarrow{IC}$ en fonction de a

On a:
$$\overrightarrow{IJ} \cdot \overrightarrow{IC} = \overrightarrow{IJ} \cdot (\overrightarrow{IK} + \overrightarrow{KC})$$

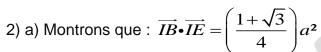
Donc:
$$\overrightarrow{IJ} \cdot \overrightarrow{IC} = \overrightarrow{IJ} \cdot \overrightarrow{IK} + \overrightarrow{IJ} \cdot \overrightarrow{KC}$$

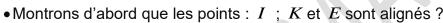
Et puisque :
$$(IJ) \perp (KC)$$
 alors : $\overrightarrow{IJ} \cdot \overrightarrow{KC} = 0$

Et puisque :
$$I$$
 le milieu de JK alors : $\overrightarrow{IK} = -\overrightarrow{IJ}$

Donc:
$$\overrightarrow{IJ} \bullet \overrightarrow{IC} = \overrightarrow{IJ} \bullet \left(-\overrightarrow{IJ} \right) = -\overrightarrow{IJ}^2 = -IJ^2$$

Donc:
$$\overrightarrow{IJ} \cdot \overrightarrow{IC} = -\frac{a^2}{4} \operatorname{car} IJ = \frac{a}{2}$$





On a :
$$EC = EB$$
 et $IC = IB$ car $ABCD$ un carré

Et on a:
$$KC = KB \operatorname{car} K$$
 le milieu du segment $[BC]$

Donc : les points :
$$I$$
 ; K et E appartiennent à la médiatrice du segment $\left[BC\right]$

Donc :
$$I$$
 ; K et E sont alignés

•On a :
$$\overrightarrow{IB} \cdot \overrightarrow{IE} = \left(\overrightarrow{IK} + \overrightarrow{KB}\right) \cdot \overrightarrow{IE}$$
 Donc : $\overrightarrow{IB} \cdot \overrightarrow{IE} = \overrightarrow{IK} \cdot \overrightarrow{IE} + \overrightarrow{KB} \cdot \overrightarrow{IE}$

Et puisque :
$$(KB) \perp (IE)$$
 alors : $\overrightarrow{KB} \cdot \overrightarrow{IE} = 0$

Donc :
$$\overrightarrow{IB} \cdot \overrightarrow{IE} = \overrightarrow{IK} \cdot \overrightarrow{IE}$$

Donc:
$$\overrightarrow{IB} \cdot \overrightarrow{IE} = IK \times IE \cos\left(\overrightarrow{IK}; \overrightarrow{IE}\right)$$

Donc:
$$\overrightarrow{IB} \cdot \overrightarrow{IE} = IK \times IE \cos(0) = IK \times IE$$

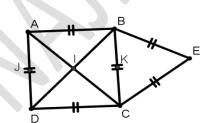
Car
$$\cos(0) = 1$$
 Or on a : $IK = \frac{a}{2}$

et
$$IE = IK + KE = IK + \sqrt{CE^2 - CK^2}$$

Donc:
$$IE = \frac{a}{2} + \sqrt{a^2 - \frac{a^2}{4}} = \frac{a}{2} + \frac{a\sqrt{3}}{2} = \frac{\left(1 + \sqrt{3}\right)}{2}a$$

Donc:
$$\overrightarrow{IB} \cdot \overrightarrow{IE} = \frac{\left(1 + \sqrt{3}\right)}{4} a \times a = \frac{\left(1 + \sqrt{3}\right)}{4} a^2$$

b) Déduction que :
$$\overrightarrow{BI} \cdot \overrightarrow{BE} = \left(\frac{1 - \sqrt{3}}{4}\right)a^2$$



On a: $\overrightarrow{BI} \cdot \overrightarrow{BE} = \overrightarrow{BI} \cdot (\overrightarrow{BI} + \overrightarrow{IE})$

Donc: $\overrightarrow{BI} \cdot \overrightarrow{BE} = \overrightarrow{BI}^2 + \overrightarrow{BI} \cdot \overrightarrow{IE} = BI^2 + \overrightarrow{BI} \cdot \overrightarrow{IE}$

Donc: $\overrightarrow{BI} \cdot \overrightarrow{BE} = BI^2 - \overrightarrow{IB} \cdot \overrightarrow{IE}$

Donc: $\overrightarrow{BI} \cdot \overrightarrow{BE} = KI^2 + KB^2 - \overrightarrow{IB} \cdot \overrightarrow{IE}$ car $BI^2 = KI^2 + KB^2$

(le triangle *IKB* est rectangle en *K*) ($KI = KB = \frac{a}{2}$)

Donc: $\overrightarrow{BI} \cdot \overrightarrow{BE} = 2\left(\frac{a}{2}\right)^2 - \frac{\left(1 + \sqrt{3}\right)}{4}a^2 \frac{a}{2}$

Par suite : $\overrightarrow{BI} \cdot \overrightarrow{BE} = \left(\frac{1 - \sqrt{3}}{4}\right) a^2$

3) Montrons que : $\cos\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2} - \sqrt{6}}{4}$

On a: $\overrightarrow{BI} \cdot \overrightarrow{BE} = BI \times BE \cos(IBE)$

Donc: $\cos(IBE) = \frac{\overrightarrow{BI} \cdot \overrightarrow{BE}}{BI \times BE}$

Et on a : $IBE = IBC + CBE = \frac{\pi}{4} + \frac{\pi}{3} = \frac{7\pi}{12}$

Et on a $BI = \frac{\sqrt{2}}{2}a$ et BE = a et $\overrightarrow{BI} \cdot \overrightarrow{BE} = \left(\frac{1 - \sqrt{3}}{4}\right)a^2$

Donc: $\cos\left(\frac{7\pi}{12}\right) = \frac{\left(\frac{1-\sqrt{3}}{4}\right)a^2}{\frac{\sqrt{2}}{2}a^2} = \frac{\sqrt{2}\left(1-\sqrt{3}\right)}{4} = \frac{\sqrt{2}-\sqrt{6}}{4}$

Déduction de : $\sin \frac{7\pi}{12}$?

On a: $\sin^2 \frac{7\pi}{12} + \cos^2 \frac{7\pi}{12} = 1$ donc: $\sin^2 \frac{7\pi}{12} = 1 - \cos^2 \frac{7\pi}{12} = 1 - \left(\frac{\sqrt{2} - \sqrt{6}}{4}\right)^2 = 1 - \frac{8 - 2\sqrt{12}}{16} = \frac{8 + 2\sqrt{12}}{16}$

Donc: $\sin^2 \frac{7\pi}{12} = \left(\frac{\sqrt{2} + \sqrt{6}}{4}\right)^2$

Par suite : $\sin \frac{7\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4}$ ou $\sin \frac{7\pi}{12} = -\frac{\sqrt{2} + \sqrt{6}}{4}$

Or: $0 < \frac{7\pi}{12} < \pi$ donc: $\sin \frac{7\pi}{12} \ge 0$

Par suite : $\sin \frac{7\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4}$

Calcul de : $\tan \frac{7\pi}{12}$?

 $\tan\frac{7\pi}{12} = \frac{\sin\frac{7\pi}{12}}{\cos\frac{7\pi}{12}} = \frac{\frac{\sqrt{2} + \sqrt{6}}{4}}{\frac{\sqrt{2} - \sqrt{6}}{4}} = \frac{\sqrt{2} + \sqrt{6}}{\sqrt{2} - \sqrt{6}} = \frac{\left(\sqrt{2} + \sqrt{6}\right)^2}{\sqrt{2}^2 - \sqrt{6}^2} = \frac{8 + 2\sqrt{12}}{-4} = -2 - \sqrt{3}$

Exercice05 : 3pts(1, 5pts + 1, 5pts)

SABCD une pyramide sa base est un parallélogramme ABCDSoient I et J les milieux respectifs des segments $\lceil SB \rceil$ et $\lceil SC \rceil$

1) Montrer que : $(AD) \parallel (IJ)$

2) Montrer que : $(IJ) \parallel (ADS)$

Solution : Dans le triangle SBC on a I le milieu du segment [SB] et J le milieu du segment [SC]

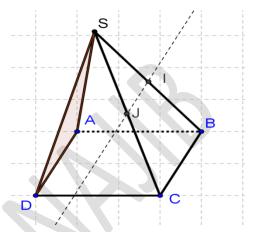
Donc $(IJ) \parallel (BC)$ (1) et puisque ABCD est un parallélogramme alors $(BC) \parallel (AD)$ (2)

De (1) et (2) on déduit que (AD)||(IJ)|

2) On a : $A \in (ADS)$ et $D \in (ADS)$ donc : $(AD) \subset (ADS)$ (4)

(d'après un axiome d'incidence)

Et puisque : $(AD) \parallel (IJ)$ alors : $(IJ) \parallel (ADS)$



C'est en forgeant que l'on devient forgeron : Dit un proverbe. 'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

