Tronc commun Sciences BIOF

Correction: Devoir surveiller n°6/J sur les leçons suivantes:

- ✓ Les Transformations du plan
- ✓ PRODUIT SCALAIRE
- √ Géométrie dans l'espace

Exercice01 : (2 pts) Sur la figure ci-dessous, ABCD est un carré de côté 4 unités et l et le milieu du segment [AB].

Calculer la valeur du produit scalaire : $\overrightarrow{IB}.\overrightarrow{ID}$

Solution: La méthode utilisant la projection orthogonale est particulièrement bien adaptée ici puisque l'on connaît la projection orthogonale *A* du point *D* sur la droite (*IB*).

 $\overrightarrow{IB}.\overrightarrow{ID} = \overrightarrow{IB}.\overrightarrow{IA}$ et puisque : \overrightarrow{IB} et \overrightarrow{IA} sont colinéaires et sont de sens contraires

Alors:
$$\overrightarrow{IB}.\overrightarrow{ID} = -IB \times IA = -2 \times 2 = -4$$

Exercice02:
$$6pts(1pts+1pts+1pts+1,5pts+1,5pts)$$

Soit ABC un triangle tel que et $AB = 2\sqrt{2}$ et AC = 3 et $BAC = \frac{\pi}{4}$

- 1) a) Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$ b) En déduire la distance BC
- 2) Soit I le milieu du segment [BC]; Calculer la distance AI
- 3) Soit J le milieu du segment AB; Calculer $\overrightarrow{AB} \cdot \overrightarrow{AJ}$
- 4) Soit K tell que $\overrightarrow{AK} = \frac{2}{3}\overrightarrow{AC}$; Montrer que les droites : (IJ) et (BK) sont perpendiculaires

Solution: 1) a) Calculons $\overrightarrow{AB} \cdot \overrightarrow{AC}$: $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \cos BAC$

Donc:
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 2\sqrt{2} \times 3\cos\left(\frac{\pi}{4}\right)$$

Donc:
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 2\sqrt{2} \times 3 \times \frac{\sqrt{2}}{2} = 6$$

b) déduction de la distance BC ?

D'après le Théorème d'Al Kashi dans le triangle ABC on a :

$$BC^2 = AB^2 + AC^2 - 2\overrightarrow{AB} \cdot \overrightarrow{AC}$$

Donc
$$BC^2 = (2\sqrt{2})^2 + 3^2 - 2 \times 6 = 8 + 9 - 12 = 5$$
 par suite: $BC = \sqrt{5}$

2) Calculons la distance AI: on a : I le milieu du segment $\begin{bmatrix} BC \end{bmatrix}$

D'après le théorème de la médiane dans ABC on a : $AB^2 + AC^2 = 2AI^2 + \frac{BC^2}{2}$

PROF: ATMANI NAJIB

Donc:
$$AI^2 = \frac{1}{2} \left(AB^2 + AC^2 - \frac{BC^2}{2} \right)$$
 C'est-à-dire: $AI^2 = \frac{1}{2} \left(8 + 9 - \frac{5}{2} \right) = \frac{29}{4}$

Par suite :
$$AI = \frac{\sqrt{29}}{2}$$

3) Calculons $\overrightarrow{AB} \cdot \overrightarrow{AJ}$

On a : J le milieu du segment AB donc : $\overrightarrow{AJ} = \frac{1}{2}\overrightarrow{AB}$

Donc:
$$\overrightarrow{AB} \cdot \overrightarrow{AJ} = \overrightarrow{AB} \cdot \frac{1}{2} \overrightarrow{AB} = \frac{1}{2} \overrightarrow{AB}^2 = \frac{1}{2} AB^2 = \frac{1}{2} 8 = 4$$

4) On a: $\overrightarrow{AK} = \frac{2}{3}\overrightarrow{AC}$ Donc: $\overrightarrow{BK} \cdot \overrightarrow{IJ} = \left(\overrightarrow{BA} + \overrightarrow{AK}\right) \cdot \overrightarrow{IJ} = \overrightarrow{BA} \cdot \overrightarrow{IJ} + \overrightarrow{AK} \cdot \overrightarrow{IJ}$

Donc: $\overrightarrow{BK} \cdot \overrightarrow{IJ} = (\overrightarrow{BA} + \overrightarrow{AK}) \cdot \overrightarrow{IJ} = \overrightarrow{BA} \cdot \overrightarrow{IJ} + \overrightarrow{AK} \cdot \overrightarrow{IJ}$

Et puisque : I le milieu du segment $\begin{bmatrix} BC \end{bmatrix}$ et J le milieu du segment $\begin{bmatrix} AB \end{bmatrix}$ Alors : $\overrightarrow{IJ} = -\frac{1}{2}\overrightarrow{AC}$

Donc: $\overrightarrow{BK} \cdot \overrightarrow{IJ} = \left(-\overrightarrow{AB}\right) \cdot \left(-\frac{1}{2}\overrightarrow{AC}\right) + \frac{2}{3}\overrightarrow{AC} \cdot \left(-\frac{1}{2}\overrightarrow{AC}\right)$

Donc: $\overrightarrow{BK} \cdot \overrightarrow{IJ} = \frac{1}{2} \overrightarrow{AB} \cdot \overrightarrow{AC} - \frac{1}{3} \overrightarrow{AC}^2 = \frac{6}{2} - \frac{9}{3} = 3 - 3 + 0$

Et puisque : $\overrightarrow{BK} \cdot \overrightarrow{IJ} = 0$ alors les droites : (IJ) et (BK) sont perpendiculaires

Exercice03: 5pts(1, 5pts + 1, 5pts + 1pts + 1pts)

 \overline{ABC} un triangle et I et J sont les milieux des segments [AC] et [AB] respectivement et E un point tel que : $\overline{BE} = \frac{3}{A}\overline{BC}$ et P est le point d'intersection des droites : (EI) et (AB)

On considère l'homothétie h qui transforme le point E en P

1) a) Monter que : $\frac{EI}{EP} = \frac{EJ}{ER} = \frac{1}{3}$.

b) Monter que : le rapport de l'homothétie h est k = -2

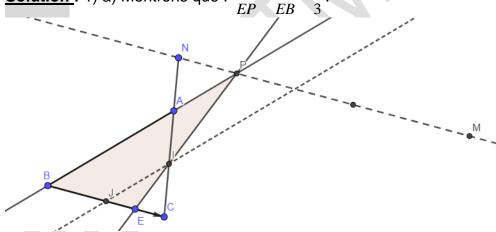
2) On considère le point M tel que : $\overrightarrow{PM} = -2\overrightarrow{EB}$

a) Monter que : l'image du point B par l'homothétie h est le point M

b) Soit N l'image du point C par l'homothétie h

Monter que : $\overrightarrow{MP} = \frac{3}{4}\overrightarrow{MN}$

Solution: 1) a) Montrons que : $\frac{EI}{EP} = \frac{EJ}{EB} = \frac{1}{3}$.



Dans le triangle ABC on a : I et J sont les milieux des segments AC et AB respectivement

Donc: $(IJ) \parallel (AB)$ et par suite: $(IJ) \parallel (BP)$

D'après le théorème de Thalès dans le triangle BPE on a : $\frac{EI}{EP} = \frac{EJ}{EB}$

On a: $\overrightarrow{EJ} = \overrightarrow{EB} + \overrightarrow{BJ} = -\overrightarrow{BE} + \overrightarrow{BJ} = -\frac{3}{4}\overrightarrow{BC} + \frac{1}{2}\overrightarrow{BC} = -\frac{1}{4}\overrightarrow{BC}$ Et on a: $\overrightarrow{EB} = -\overrightarrow{BE} = -\frac{3}{4}\overrightarrow{BC}$

Donc: $\overrightarrow{EB} = -3\overrightarrow{EJ}$

Par suite : EB = 3EJ c'est-à-dire : $\frac{EJ}{EB} = \frac{1}{3}$

Par suite : $\frac{EI}{EP} = \frac{EJ}{ER} = \frac{1}{3}$

b) Montrons que : le rapport de l'homothétie h est k = -2

Soit k le rapport de l'homothétie hOn a : h(E) = P signifie que : $\overrightarrow{IP} = k\overrightarrow{IP}$

Mais on a : $\frac{EI}{EP} = \frac{1}{2}$ donc : EP = 3EI et puisque \overrightarrow{EP} et \overrightarrow{EI} sont colinéaires et de même sens

Alors : $\overrightarrow{EP} = 3\overrightarrow{EI}$

Donc: $\overrightarrow{EI} + \overrightarrow{IP} = 3\overrightarrow{EI}$

Donc: $\overrightarrow{IP} = 3\overrightarrow{EI} - \overrightarrow{EI}$

Donc : $\overrightarrow{IP} = 2\overrightarrow{EI}$

Donc: $\overrightarrow{IP} = -2\overrightarrow{IE}$ et par suite: k = -2

2)a) Montrons que : h(B) = M

On a : $\overrightarrow{PM} = -2\overrightarrow{EB}$ signifie que : $\overrightarrow{IM} - \overrightarrow{IP} = -2(\overrightarrow{IB} - \overrightarrow{IE})$

Signifie que : $\overrightarrow{IM} - \overrightarrow{IP} = -2\overrightarrow{IB} + 2\overrightarrow{IE}$

Signifie que : $\overrightarrow{IM} = -2\overrightarrow{IB}$ car $\overrightarrow{IP} = -2\overrightarrow{IE}$

Par suite : h(B) = M

2)b) Montrons que : $\overrightarrow{MP} = \frac{3}{4} \overrightarrow{MN}$

On a : $\begin{cases} h(C) = N \\ h(B) = M \end{cases}$ d'après la propriété caractéristique de l'homothétie

Alors: $\overrightarrow{MN} = -2\overrightarrow{BC}$ et puisque: $\overrightarrow{BE} = \frac{3}{4}\overrightarrow{BC}$ c'est-à-dire: $\overrightarrow{BC} = \frac{4}{3}\overrightarrow{BE}$ et $\overrightarrow{EB} = -\frac{1}{2}\overrightarrow{PM}$

Alors: $\overrightarrow{BE} = \frac{2}{3} \overrightarrow{PM}$

Donc: $\overrightarrow{MN} = -2\frac{2}{3}\overrightarrow{PM}$ c'est-à-dire: $\overrightarrow{MP} = \frac{3}{4}\overrightarrow{MN}$

Exercice04: (3 pts) Soient deux points fixes différents A et B du plan.

Soit f une transformation du plan qui transforme chaque point M en M' tel que :

 $\overrightarrow{MM'} - 3\overrightarrow{MA} + 2\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$

Montrer que f est une translation et Trouver son vecteur

Solution: Pour chaque point M du plan nous avons :

f(M) = M' Équivaut à : $\overrightarrow{MM'} - 3\overrightarrow{MA} + 2\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$

Équivaut à : $\overrightarrow{MM'} - 3\overrightarrow{MA} + 2(\overrightarrow{MA} + \overrightarrow{AB}) + (\overrightarrow{MA} + \overrightarrow{AC}) = \overrightarrow{0}$

Équivaut à : $\overrightarrow{MM'} - 3\overrightarrow{MA} + 2\overrightarrow{MA} + 2\overrightarrow{AB} + \overrightarrow{MA} + \overrightarrow{AC} = \vec{0}$

Équivaut à : $\overrightarrow{MM'} = -2\overrightarrow{BA} + \overrightarrow{AC}$ c'est-à-dire : $\overrightarrow{MM'} = 2\overrightarrow{AB} + \overrightarrow{AC}$

Équivaut à : $t_{2\overline{AB}+\overline{AC}}(M)=M'$ Cela veut dire que : f est une translation de vecteur $2\overrightarrow{AB}+\overrightarrow{AC}$

Exercice05: 4pts(1pts+1,5pts+1,5pts) Soit ABCDEFGH un cube de l'espace et Soient I; J les milieux respectifs des segments [BC]; [FG]

PROF: ATMANI NAJIB

1) Montrer que : (IJ) || (HFB)

2) Montrer que $(HFD) \cap (EIJ) = (PQ)$:

Avec $(HF)\cap (EJ) = \{P\}$ et $(AI)\cap (BD) = \{Q\}$

3) Montrer que (PQ) || (FB):

Solution:1) On a I le milieu du segment [BC] et J le milieu

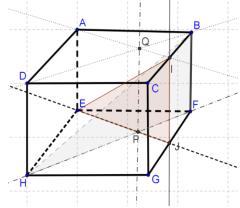
Du segment[FG] donc : $(BF) \parallel (IJ)$

Et on $a(BF) \subset (HFB)$ donc : $(IJ) \parallel (HFB)$

2) On a : $(EJ) \subset (EIJ)$ et $(AI) \subset (EIJ)$ (car $(AE) \parallel (IJ)$ les points A; J; E; I sont coplanaires

Donc les points A; J; E; I sont coplanaires

Donc: $P \in (EIJ)$ et $Q \in (EIJ)$ (car $Q \in (AI)$ et $P \in (EJ)$)



Ce qui équivaut à dire que : $(PQ) \subset (EIJ)(1)$

D'autre part on a : $(HF) \subset (HFB)$ et $(BD) \subset (HFD)$ (car $(DH) \parallel (BF)$

Donc : D; H; et B coplanaires) F

Donc: $P \in (HFD)$ et $Q \in (HFD)$

Ce qui équivaut à dire que/ $(PQ) \subset (HFD)$:2)

Et puisque : $(HFD) \neq (EIJ)$

Alors de (1) et (2) on déduit que : $(HFD) \cap (EIJ) = (PQ)$

3) On a : $(IJ) \subset (EIJ)$ et $(HFD) \cap (EIJ) = (PQ)$ et $(BF) \subset (HFD)$ et $(BF) \parallel (IJ)$

Donc: $(PQ) \parallel (FB)$

C'est en forgeant que l'on devient forgeron : Dit un proverbe. 'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

PROF: ATMANI NAJIB