Cours avec Exercices d'application avec solutions

PROF: ATMANI NAJIB
Tronc commun Sciences BIOF
http://www.xriadiat.com

Leçon : Equations et inéquations du second degré a une inconnue

Présentation globale

- 1) Inéquation du second degré a une inconnue
- 2) Equation du second degré a une inconnue.

1) Equation du second degré a une inconnue.

a) **Définition**: Une équation du second degré a une inconnue est une équation de la forme $ax^2 + bx + c = 0$ où a, b et c sont des réels avec $a \ne 0$.

Une solution de cette équation s'appelle une racine du trinôme : $ax^2 + bx + c$.

Exemple : L'équation $3x^2 - 6x - 2 = 0$ est une équation du second degré.

b) Résolution d'une équation du second degré a une inconnue.

Activité: Résoudre dans \mathbb{R} les équations suivantes :1) $x^2 = 16$ 2) $x^2 = -8$

3) $(x+2)^2 = 9$ 4) $5x^2 - 4x = 0$ 5) $3x^2 - x - 2 = 0$ (on peut utiliser l'écriture canonique)

Solution:1) L'équation : $x^2 = 16$

16 est positif donc l'équation admet deux solutions $x = \sqrt{16} = 4$ et. $x = -\sqrt{16} = -4$

Donc l'ensemble de toutes les solutions est : $S = \{-4, 4\}$

2) L'équation : $x^2 = -8$ -8 est négatif donc l'équation n'a pas de solution dans \mathbb{R} .

Donc: $S = \emptyset$

3) L'équation : $(x+2)^2 = 9$ On a alors x+2=3 ou . x+2=-3

L'équation admet deux solutions x=1 et x=-5. Donc l'ensemble de toutes les solutions est : $S=\{-5;1\}$

4) $5x^2 - 4x = 0$ Signifie que : x(5x - 4) = 0

Soit: x = 0 ou 5x - 4 = 0 c'est-à-dire: x = 0 ou $x = \frac{4}{5}$

Donc l'ensemble de toutes les solutions est : $S = \left\{0; \frac{4}{5}\right\}$

5) $3x^2 - x - 2 = 0$: On va d'abord Factoriser les trinômes $3x^2 - x - 2$

$$3x^{2} - x - 2 = 3\left(x^{2} - \frac{1}{3}x - \frac{2}{3}\right) = 3\left(x^{2} - 2\frac{1}{2 \times 3}x + \left(\frac{1}{6}\right)^{2} - \left(\frac{1}{6}\right)^{2} - \frac{2}{3}\right)$$

$$3x^{2} - x - 2 = 3\left(x^{2} - \frac{1}{3}x - \frac{2}{3}\right) = 3\left(\left(x - \left(\frac{1}{6}\right)\right)^{2} - \frac{25}{36}\right)$$

 $3x^2 - x - 2 = 3\left(\left(x - \left(\frac{1}{6}\right)\right)^2 - \frac{25}{36}\right)$ Cette écriture s'appelle la forme canonique

$$3x^2 - x - 2 = 3\left(x - \frac{1}{6} - \frac{5}{6}\right)\left(x - \frac{1}{6} + \frac{5}{6}\right) = 3\left(x - 1\right)\left(x + \frac{2}{3}\right)$$

Donc: $3x^2 - x - 2 = 3(x-1)\left(x + \frac{2}{3}\right)$ la forme factorisée

$$3x^2 - x - 2 = 0$$
 Signifie que : $(x-1)(x+\frac{2}{3}) = 0$

On a alors x-1=0 ou $x+\frac{2}{3}=0$

L'équation admet deux solutions x=1 et $x=-\frac{2}{3}$

Donc l'ensemble de toutes les solutions est : $S = \left\{-\frac{2}{3};1\right\}$

Cas général :
$$ax^2 + bx + c = a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right) = a\left(x^2 + 2\frac{b}{2\times a}x + \left(\frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 + \frac{c}{a}\right)$$

$$ax^{2} + bx + c = \left(x + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a} = a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right] = a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right]$$

On pose $\Delta = b^2 - 4ac$ et $\alpha = -\frac{b}{2a}$ et $\beta = -\frac{\Delta}{4a^2}$

Définitions: Soit le du trinôme $ax^2 + bx + c$ avec $a \ne 0$.

- ✓ Le trinôme peut s'écrire sous la forme dite la forme canonique : $ax^2 + bx + c = a \left[(x \alpha)^2 + \beta \right]$
- ✓ On appelle discriminant du trinôme : $ax^2 + bx + c$, le nombre réel, noté $\Delta = b^2 4ac$.

Exemple : Pour le trinôme $3x^2 - x - 2$

a) Calculons le discriminant :a = 3, b = -1 et c = -2

Donc: $\Delta = b^2 - 4ac = (-1)^2 - 4 \times 3 \times (-2) = = 1 + 24 = 25$

b) Déterminons la forme canonique $:3x^2-x-2=3\left[\left(x-\alpha\right)^2+\beta\right]$

$$\alpha = -\frac{b}{2a} = -\frac{-1}{2 \times 3} = \frac{1}{6}$$
 et $\beta = -\frac{\Delta}{4a^2} = -\frac{25}{4 \times 3^2} = -\frac{25}{36}$

La forme canonique est donc : $3x^2 - x - 2 = 3\left[\left(x - \frac{1}{6}\right)^2 - \frac{25}{36}\right]$

Exercice01: Déterminer la forme canonique du trinôme suivant : $5x^2 + 20x - 65$

Solution: Pour écrire $5x^2 + 20x - 65$ sous forme canonique on commence par factoriser le trinôme par le coefficient qui est devant x^2 : On obtient $5(x^2 + 4x - 13)$

Puis on doit transformer : $x^2 + 4x - 13$ en factorisant avec les identités remarquables :

Pour cela on utilise les deux premiers termes de $x^2 + 4x - 13$ (x^2 correspond à a^2 et 4x à 2ab)

Donc: a = x et 2ab = 4x c'est-à-dire: b = 2.

Donc: $x^2 + 4x - 13 = (x+2)^2 - ... - 13$

Si on développe $(x+2)^2$ on obtient x^2+4x+4

Pour avoir seulement $x^2 + 4x$ on doit retrancher 4.

Donc: $x^2 + 4x - 13 = (x+2)^2 - 4 - 13 = (x+2)^2 - 17$

Donc: $5x^2 + 20x - 65 = 5[(x+2)^2 - 17]$

Donc: $5x^2 + 20x - 65 = 5(x+2)^2 - 85$: est la forme canonique de $5x^2 + 20x - 65$

Propriété1: Les solutions dans \mathbb{R} de L'équation $x^2 = a$ (Dépendent du signe de : a)

- •Si a < 0, alors l'équation n'a pas de solution.
- •Si a = 0, alors l'équation possède une unique solution qui est 0.
- ullet Si a > 0, alors l'équation possède deux solutions qui sont \sqrt{a} et $-\sqrt{a}$

Démonstration:

- Si a < 0, l'équation n'a pas de solution car un carré est positif.
- Si a = 0, alors l'équation s'écrit $x^2 = 0$ donc x = 0.
- Si a > 0: $x^2 = a$ équivaut à : $x^2 a = 0$

Soit
$$\left(x - \sqrt{a}\right)\left(x + \sqrt{a}\right) = 0$$

$$x - \sqrt{a} = 0 \quad ou \quad x + \sqrt{a} = 0$$
$$x = \sqrt{a} \quad ou \quad x = -\sqrt{a}$$

Propriété2: Soit l'équation $ax^2 + bx + c = 0$ où a, b et c sont des réels avec $a \neq 0$ Soit Δ son discriminant.

- Si Δ < 0 : L'équation $ax^2 + bx + c = 0$ n'a pas de solution réelle c a d : $S = \emptyset$ Et on ne peut pas factorisée le trinôme $ax^2 + bx + c$
- Si $\Delta = 0$: L'équation $ax^2 + bx + c = 0$ a une seule solution (dite double): $x_0 = -\frac{b}{2a}$.
- c a d : $S = \{x_0\}$ et le trinôme $ax^2 + bx + c$ a une forme factorisée : $ax^2 + bx + c = a(x x_0)^2$
- Si $\Delta > 0$: L'équation $ax^2 + bx + c = 0$ a deux solutions distinctes : $x_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

C'est à dire : $S = \{x_1; x_2\}$

Et le trinôme : $ax^2 + bx + c$ a une forme factorisée : $ax^2 + bx + c = a(x - x_1)(x - x_2)$

<u>Démonstration</u>: On a vu que le trinôme $ax^2 + bx + c$ avec $a \ne 0$ peut s'écrire sous sa forme

canonique
$$ax^2 + bx + c = a\left[\left(x - \alpha\right)^2 + \beta\right]$$
 avec $\alpha = -\frac{b}{2a}$ et $\beta = -\frac{b^2 - 4ac}{4a^2}$

Donc:
$$ax^2 + bx + c = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a^2} \right] = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$

- Si
$$\Delta$$
 < 0 : L'équation $ax^2 + bx + c = 0$ peut s'écrire : $\left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2}$

Comme un carré ne peut être négatif $\left(\frac{\Delta}{4a^2} < 0\right)$ l'équation n'a pas de solution.

- Si
$$\Delta = 0$$
: $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2$

L'équation
$$ax^2 + bx + c = 0$$
 peut s'écrire : $\left(x + \frac{b}{2a}\right)^2 = 0$

L'équation n'a qu'une seule solution :
$$x_0 = -\frac{b}{2a}$$

- Si
$$\Delta > 0$$
: $ax^2 + bx + c = a\left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right)\left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right)$

L'équation :
$$ax^2 + bx + c = 0$$
 peut s'écrire : $\left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right)\left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right) = 0$

L'équation a deux solutions distinctes :
$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Applications : Résoudre les équations suivantes et Factoriser les trinômes :

a)
$$2x^2 - x - 6 = 0$$

b)
$$2x^2 - 3x + \frac{9}{8} = 0$$

b)
$$2x^2 - 3x + \frac{9}{8} = 0$$
 c) $x^2 + 3x + 10 = 0$ d) $6x^2 - x - 1 = 0$

d)
$$6x^2 - x - 1 = 0$$

Solution: a) Calculons le discriminant de l'équation : $2x^2 - x - 6 = 0$: a = 2, b = -1 et c = -6 Donc $\Delta = b^2 - 4ac = (-1)^2 - 4 \times 2 \times (-6) = 49$.

Comme $\Delta > 0$, l'équation possède deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-1) - \sqrt{49}}{2 \times 2} = -\frac{3}{2}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-1) + \sqrt{49}}{2 \times 2} = 2$

Donc: $S = \left\{-\frac{3}{2}; 2\right\}$ et le trinôme $2x^2 - x - 6$ a une forme factorisée :

$$2x^2 - x - 6 = a\left(x - \left(-\frac{3}{2}\right)\right)(x - 2)$$
 C'est à dire : $2x^2 - x - 6 = a\left(x + \frac{3}{2}\right)(x - 2)$

b) Calculons le discriminant de l'équation :
$$2x^2 - 3x + \frac{9}{8} = 0$$
 : $a = 2$, $b = -3$ et $c = \frac{9}{8}$

Donc:
$$\Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times \frac{9}{8} = 0.$$

Comme $\Delta = 0$, l'équation possède une seule solution (dite double):

$$x_0 = -\frac{b}{2a} = -\frac{-3}{2 \times 2} = \frac{3}{4}$$
 C'est à dire : $S = \left\{ \frac{3}{4} \right\}$ et le trinôme $2x^2 - 3x + \frac{9}{8}$ a une forme factorisée :

$$2x^2 - 3x + \frac{9}{8} = 2\left(x - \frac{3}{4}\right)^2$$

c) Calculons le discriminant de l'équation :
$$x^2 + 3x + 10 = 0$$
 : a = 1, b = 3 et c = 10

Donc:
$$\Delta = b^2 - 4ac = 3^2 - 4 \times 1 \times 10 = -31$$
.

Comme Δ < 0, l'équation ne possède pas de solution réelle ; C'est à dire : $S = \emptyset$

d)
$$6x^2 - x - 1 = 0$$
 $\Delta = 1 + 24 = 25$; $x_1 = \frac{1+5}{12} = \frac{1}{2}$ et $x_2 = \frac{1-5}{12} = -\frac{1}{3}$

Donc:
$$S = \left\{-\frac{1}{3}; \frac{1}{2}\right\}$$
 et $R(x) = 6\left(x - \frac{1}{2}\right)\left(x + \frac{1}{3}\right)$

Exercice02: Factoriser les trinômes : a)
$$4x^2 + 19x - 5$$
 b) $9x^2 - 6x + 1$

Solution:a) On cherche les racines du trinôme
$$4x^2 + 19x - 5$$
:

Calcul du discriminant :
$$\Delta = 19^2 - 4 \times 4 \times (-5) = 441$$

Les racines sont :
$$x_1 = \frac{-19 - \sqrt{441}}{2 \times 4} = -5$$
 et $x_2 = \frac{-19 + \sqrt{441}}{2 \times 4} = \frac{1}{4}$

On a donc: $4x^2 + 19x - 5 = 4(x - (-5))(x - \frac{1}{4}) = (x + 5)(4x - 1)$.

b) On cherche les racines du trinôme : $9x^2 - 6x + 1$: Calcul du discriminant : $\Delta = (-6)^2 - 4 \times 9 \times 1 = 0$

Comme $\Delta = 0$, le trinôme possède une seule racine (dite racine double) : $x_0 = -\frac{b}{2a} = -\frac{-6}{2 \times 9} = \frac{1}{3}$:

et le trinôme $9x^2 - 6x + 1$ a une forme factorisée : $9x^2 - 6x + 1 = 9\left(x - \frac{1}{3}\right)^2$

Exercice03: Avec 60 dh j'ai acheté un nombre de jouets identique (ont donc le même prix) Si chaque jouet avait couté 1dh de moins ; j'aurais pu en acheter 3 de plus Combien en ai-je acheté ?

Solution : Soit n le nombre de jouets achetés et soit p le prix d'un jouet en dh

Nous avons donc: 60 = np et 60 = (n-1)(p+3)

Nous déduisons donc l'équation : $n^2 + 3n - 180 = 0$

Calcul du discriminant : $\Delta = 3^2 + 4 \times 180 \times 1 = 729 \times 0$

La solution est : $n_1 = \frac{-3 + \sqrt{729}}{2 \times 1} = 12$ et $n_2 = \frac{-3 - \sqrt{729}}{2 \times 1} = -15$

Nous rejetons $n_2 = -15$ car le prix est positif

Donc : j'ai acheté 12 jouets

Exercice04: Résoudre dans \mathbb{R} l'équation (E) : $\frac{x-2}{2x^2-3x-2} - \frac{x^2}{2x^2+13x+6} = 0$

Solution : On commence par factoriser les expressions $2x^2 - 3x - 2$ et $2x^2 + 13x + 6$:

Le discriminant de $2x^2 - 3x - 2$ est : $\Delta = (-3)^2 - 4 \times 2 \times (-2) = 25$ et ses racines sont :

$$x_1 = \frac{3 - \sqrt{25}}{2 \times 2} = -\frac{1}{2}$$
 et $x_2 = \frac{3 + \sqrt{25}}{2 \times 2} = 2$ et on a donc : $2x^2 - 3x - 2 = 2\left(x + \frac{1}{2}\right)(x - 2) = (2x + 1)(x - 2)$.

Le discriminant de $2x^2 + 13x + 6$ est $\Delta' = 13^2 - 4 \times 2 \times 6 = 121$ et ses racines sont :

$$x_1' = \frac{-13 - \sqrt{121}}{2 \times 2} = -6$$
 et $x_2' = \frac{-13 + \sqrt{121}}{2 \times 2} = -\frac{1}{2}$

On a donc: $2x^2 + 13x + 6 = 2(x+6)(x+\frac{1}{2}) = (x+6)(2x+1)$.

- L'équation (E) s'écrit :
$$\frac{x-2}{(2x+1)(x-2)} - \frac{x^2}{(x+6)(2x+1)} = 0$$

Les valeurs -6, $-\frac{1}{2}$ et 2 annulent le dénominateur.

On résout alors (E) sur $\mathbb{R} \setminus \left\{-6; -\frac{1}{2}; 2\right\}$.

(E) s'écrit :
$$\frac{1}{2x+1} - \frac{x^2}{(x+6)(2x+1)} = 0 \Leftrightarrow \frac{x+6}{(2x+1)(x+6)} - \frac{x^2}{(x+6)(2x+1)} = 0 \Leftrightarrow \frac{x+6-x^2}{(2x+1)(x+6)} = 0$$

C'est-à-dire: $x + 6 - x^2 = 0$ car $x \ne -\frac{1}{2}$ et $x \ne -6$.

Le discriminant de $-x^2 + x + 6$ est : $\Delta'' = 1^2 - 4 \times (-1) \times 6 = 25$.

Les racines sont :
$$x_1 = \frac{-1 - \sqrt{25}}{2 \times (-1)} = 3$$
 et $x_2 = \frac{-1 + \sqrt{25}}{2 \times (-1)} = -2$

Les solutions de l'équation (E) sont : -2 et 3 donc $S = \{-2, 3\}$

c)La somme et le produit des racines d'un trinôme.

Proposition1: soit le trinôme $ax^2 + bx + c$ tel que son discriminant $\Delta > 0$

Si
$$x_1$$
 et x_2 sont les racines du trinôme alors : $x_1 + x_2 = \frac{-b}{a}$ et $x_1 \times x_2 = \frac{c}{a}$

Exemple : Soit le trinôme : $2024x^2 - 2025x + 1$

- a) Vérifier que 1 est racine du trinôme
- b) Trouver l'autre racine du trinôme

Solution:a)
$$2024 \times 1^2 - 2025 \times 1 + 1 = 2024 - 2025 + 1 = 2025 - 2025 = 0$$
 donc $x_1 = 1$

b) a = 2024, b = -2025 et c = 1

On a:
$$x_1 \times x_2 = \frac{c}{a}$$
 donc $1 \times x_2 = \frac{1}{2024}$ c'est-à-dire : $x_2 = \frac{1}{2024}$

Exercice05: Soit le trinôme(
$$E$$
): $P(x) = -3x^2 + \sqrt{3}x + 3$

- 1) Prouver que le trinôme (E) admet deux racines distinctes α et β sans les calculer
- 2) Déduire les valeurs suivantes : $\alpha + \beta$; $\alpha \times \beta$; $\frac{1}{\alpha} + \frac{1}{\beta}$; $\alpha^2 + \beta^2$; $\frac{\beta}{\alpha} + \frac{\alpha}{\beta}$; $\alpha^3 + \beta^3$

Solution : 1)
$$a = -3$$
 : et et $b = \sqrt{3}$ et $c = 3$; $\Delta = b^2 - 4ac = \sqrt{3}^2 - 4 \times (-3) \times 3 = 3 + 36 = 39$

Comme $\Delta > 0$: le trinôme(E) a deux racines distinctes : α et β

2) On a:
$$\alpha + \beta = -\frac{b}{a}$$
 et $\alpha \times \beta = \frac{c}{a}$ donc $\alpha + \beta = \frac{-\sqrt{3}}{-3} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$ et $\alpha \times \beta = \frac{3}{-3} = -1$

$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{\frac{\sqrt{3}}{3}}{-1} = -\frac{\sqrt{3}}{3}$$

On a:
$$(\alpha + \beta)^2 = \alpha^2 + 2\alpha\beta + \beta^2$$
 donc $(\alpha + \beta)^2 - 2\alpha\beta = \alpha^2 + \beta^2$

Donc
$$\alpha^2 + \beta^2 = \left(\frac{\sqrt{3}}{3}\right)^2 - 2(-1) = \frac{3}{9} + 2 = \frac{1}{3} + 2 = \frac{7}{3}$$

On a:
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{\frac{7}{3}}{-1} = -\frac{7}{3}$$

On sait que :
$$(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$$

Donc:
$$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha^2\beta - 3\alpha\beta^2$$
 c'est-à-dire: $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$

Donc:
$$\alpha^3 + \beta^3 = \left(\frac{\sqrt{3}}{3}\right)^3 - 3(-1)\frac{\sqrt{3}}{3} = \frac{3\sqrt{3}}{27} + \sqrt{3} = \frac{\sqrt{3}}{9} + \sqrt{3} = \frac{10\sqrt{3}}{9}$$

Proposition2: Le système : (I) $\begin{cases} x+y=s \\ x\times y=p \end{cases}$ où les s, p sont des réels donnés admet une solution

dans \mathbb{R}^2 si et seulement si : $s^2 - 4p \ge 0$ et dans ce cas x, y sont solutions de l'équation $x^2 - sx + p = 0$.

Exemple : Résoudre dans \mathbb{R}^2 le système : $\begin{cases} x + y = 5 \\ x \times y = 4 \end{cases}$

Solution : Méthode1 : $\begin{cases} x + y = 5 \\ x \times y = 4 \end{cases}$ ssi $\begin{cases} x = 5 - y \\ (5 - y) \times y = 4 \end{cases}$

On considère : $(5-y) \times y = 4 \text{ ssi} - y^2 + 5y = 4 \text{ ssi} y^2 - 5y + 4 = 0$

Calculons le discriminant : a = 1, b = -5 et c = 4 donc $\Delta = b^2 - 4ac = (-5)^2 - 4 \times 1 \times 4 = 9$.

Comme $\Delta > 0$, l'équation possède deux solutions distinctes :

$$y_1 = \frac{5 - \sqrt{9}}{2a} = \frac{5 - 3}{2 \times 1} = 1$$
 et $y_2 = \frac{5 + \sqrt{9}}{2a} = \frac{5 + 3}{2 \times 1} = 4$

Si y = 1 et puisque x = 5 - y alors x = 5 - 1 = 4

Si y = 4 et puisque x = 5 - y alors x = 5 - 4 = 1

On en déduit que : $S = \{(4,1); (1,4)\}$

Exercice06: Donner une équation du second degré qui a pour solutions : $\alpha = 1$ et $\beta = -2$

Solution: On sait que : Si x_1 et x_2 sont les racines du trinôme alors ils sont solutions de l'équation :

$$x^{2} - sx + p = 0$$
 avec :
$$\begin{cases} x + y = s \\ x \times y = p \end{cases}$$

On a : $\alpha = 1$ et $\beta = -2$ solutions de l'équation du second degré donc : $x^2 - (1 + (-2))x + 1 \times (-2) = 0$

C'est-à-dire : $x^2 + x - 2 = 0$

d) Le discriminant réduit d'un trinôme.

Soit le trinôme : $ax^2 + bx + c$

Si b est pair c a d b=2b' on parle du discriminant réduit $\Delta'=b'^2-ac$ et on a :

- Si Δ' < 0 : pas de solution réelle c a d : $S = \emptyset$

- Si $\Delta' = 0$: L'équation a une seule solution (dite double) : $x_0 = -\frac{b'}{a}$.

- Si $\Delta' > 0$: L'équation a deux solutions distinctes : $x_1 = \frac{-b' - \sqrt{\Delta'}}{a}$ et $x_2 = \frac{-b' + \sqrt{\Delta'}}{a}$

Applications : Résoudre l'équation suivante : $x^2 - 22x - 23 = 0$

Solution: on a: b = -22 et 22 est pair $b = -2 \times 11$ donc b' = -11

Calculons le discriminant réduit $\Delta' = b'^2 - ac$ de l'équation :

$$\Delta' = b'^2 - ac = (-11)^2 - 1 \times (-23) = 121 + 23 = 144$$

Comme Δ ' > 0, l'équation possède deux solutions distinctes :

$$x_1 = \frac{-b' - \sqrt{\Delta'}}{a} = \frac{-(-11) - \sqrt{144}}{1} = \frac{11 - 12}{1} = -1$$
 et $x_2 = \frac{-b' + \sqrt{\Delta'}}{a} = \frac{-(-11) + \sqrt{144}}{1} = \frac{11 + 12}{1} = 23$

Donc: $S = \{-1, 23\}$

Exercice07: A)1) Résoudre dans \mathbb{R} l'équations suivante : $2x^2 - 3x - 2 = 0$

2) En déduire les solutions des équations suivantes :

a)
$$2x - 3\sqrt{x} - 2 = 0$$

b)
$$2x^2 - 3|x| - 2 = 0$$

c)
$$2x^4 - 3x^2 - 2 = 0$$
 d) $2x^3 - 3x^2 = 2x$

d)
$$2x^3 - 3x^2 = 2x$$

B) 1) Résoudre dans \mathbb{R} les équations suivantes : $x^2 + x - 6 = 0$ et $x^2 - x - 2 = 0$

2) En déduire les solutions de l'équation suivante : (E): $x^2 - |x-2| - 4 = 0$

Solution : A)1) $2x^2 - 3x - 2 = 0$

Calculons le discriminant de l'équation $2x^2-3x-2=0$: a = 2, b = -3 et c = -2

Donc: $\Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times (-2) = 25$.

Comme $\Delta > 0$, l'équation possède deux solutions distinctes : $x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-3) - \sqrt{25}}{2 \times 2} = -\frac{1}{2}$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-3) + \sqrt{25}}{2 \times 2} = 2 \text{ Donc} : S = \left\{-\frac{1}{2}; 2\right\}$$

2) 2)
$$2x-3\sqrt{x}-2=0$$
 avec $x \ge 0$

$$2x-3\sqrt{x}-2=0$$
 Equivalent à : $2(\sqrt{x})^2-3\sqrt{x}-2=0$ car $\sqrt{x}^2=x$

Faisons un changement de variable en posant : $X = \sqrt{x}$

Nous obtenons l'équation : $2X^2 - 3X - 2 = 0$

Donc : d'après A) 1) on a : $X = -\frac{1}{2}$ ou X = 2

Equivalent à : $\sqrt{x} = -\frac{1}{2}$ ou $\sqrt{x} = 2$

Mais l'équation : $\sqrt{x} = -\frac{1}{2}$ n'a pas de solutions dans \mathbb{R}

 $\sqrt{x} = 2$ Signifie: $(\sqrt{x})^2 = 2^2$ c'est-à-dire: x = 4 et par suite: $S = \{4\}$.

2) b) $2x^2 - 3|x| - 2 = 0$ Equivalent à : $2|x|^2 - 3|x| - 2 = 0$ car $|x|^2 = x^2$

Faisons un changement de variable en posant : X = |x| nous obtenons l'équation : $2X^2 - 3X - 2 = 0$

Donc : d'après A) 1) on a : $x = -\frac{1}{2}$ ou x = 2 qui est équivalent à : $|x| = -\frac{1}{2}$ ou |x| = 2

Mais l'équation : $|x| = -\frac{1}{2}$ n'a pas de solutions dans \mathbb{R}

|x| = 2 Signifie: x = 2 ou x = -2 par suite: $S = \{-1, 1\}$

2) c) $2x^4 - 3x^2 - 2 = 0$ Equivalent à : $2(x^2)^2 - 3x^2 - 2 = 0$

Faisons un changement de variable en posant : $X = x^2$ nous obtenons donc : l'équation : $2X^2 - 3X - 2 = 0$

Donc : d'après A) 1) on a : $X = -\frac{1}{2}$ ou X = 2 et par suite : $x^2 = -\frac{1}{2}$ ou $x^2 = 2$

Mais l'équation : $x^2 = -\frac{1}{2}$ n'a pas de solutions dans \mathbb{R}

 $x^2 = 2$ Signifie: $x = \sqrt{2}$ ou $x = -\sqrt{2}$ par suite: $S = \{-\sqrt{2}; \sqrt{2}\}$.

d) $2x^3 - 3x^2 = 2x$ Equivalent à : $2x^3 - 3x^2 - 2x = 0$

Equivalent à : $x(2x^2-3x-2)=0$

Equivalent à : x = 0 ou $2x^2 - 3x - 2 = 0$

Equivalent à : x = 0 ou $x_1 = -\frac{1}{2}$ ou $x_2 = 2$ et par suite : $S = \left\{-\frac{1}{2}; 0; 2\right\}$.

B) 1) Résolution dans \mathbb{R} des équations suivantes : $x^2 + x - 6 = 0$ et $x^2 - x - 2 = 0$

Calculons le discriminant de l'équation $x^2 + x - 6 = 0$: a = 1, b = 1 et c = -6

Donc : $\Delta = b^2 - 4ac = 1^2 - 4 \times 1 \times (-6) = 25$.

Comme $\Delta > 0$, l'équation possède deux solutions distinctes : $x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-1 - \sqrt{25}}{2 \times 1} = -3$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1 + \sqrt{25}}{2 \times 1} = 2$$
 Donc: $S = \{-3, 2\}$

Calculons le discriminant de l'équation $x^2 - x - 2 = 0$: a = 1, b = -1 et c = -2

Donc $\Delta = b^2 - 4ac = (-1)^2 - 4 \times 1 \times (-2) = 9$.

Comme $\Delta > 0$, l'équation possède deux solutions distinctes : $x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{1 - \sqrt{9}}{2 \times 1} = -1$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{1 + \sqrt{9}}{2 \times 1} = 2$$
 Donc: $S = \{-1, 2\}$

2) Déduction des solutions de l'équation suivante : (E): $x^2 - |x-2| - 4 = 0$

Etudions le signe de : x-2

Si $x \ge 2$ alors $x - 2 \ge 0$ donc : |x - 2| = x - 2

Donc: l'équation devient: $x^2 - (x-2) - 4 = 0$

Signifie: $x^2 - x + 2 - 4 = 0$ c'est-à-dire: $x^2 - x - 2 = 0$

Or: d'après B) 1) $x_1 = -1$ et $x_2 = 2$ mais: $x_1 = -1 \notin [2; +\infty[$ donc: $S_1 = \{2\}]$

Si x < 2 alors $x - 2 \le 0$ donc: |x - 2| = -(x - 2) = -x + 2

Donc : l'équation devient : $x^2 + (x-2) - 4 = 0$ c'est à dire : $x^2 + x - 2 - 4 = 0$

Signifie: $x^2 + x - 6 = 0$ Or: d'après B) 1) $x_1 = -3$ et $x_2 = 2$

Mais: $x_2 = 2 \notin]-\infty; 2[$ Donc: $S_2 = \{-3\}$

Par suite : $S = S_1 \cup S_2 = \{-3, 2\}$.

2) Inéquation du second degré a une inconnue.

a) Définition : On pose : $P(x) = ax^2 + bx + c$ $a \ne 0$

Une inéquation du second degré a une inconnue est une inéquation de la forme :

$$P(x) \ge 0$$
 ou $P(x) > 0$ ou $P(x) \le 0$ ou $P(x) < 0$

b) Signes du trinôme : $ax^2 + bx + c$. $a \ne 0$

Si $\Delta < 0$: On a vu que le trinôme : $ax^2 + bx + c$ avec $a \ne 0$ peut s'écrire sous la forme :

$$ax^2 + bx + c = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$
 et puisque $\Delta < 0$ c'est-à-dire : $-\Delta > 0$

Alors: $\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} > 0$

Et par suite : le trinôme $ax^2 + bx + c$ est du signe de a

Si $\Delta = 0$: On a: $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2$ et puisque $\left(x + \frac{b}{2a}\right)^2 \ge 0$ Alors le trinôme $ax^2 + bx + c$ est du signe de *a* pour $x \neq \frac{-b}{2\pi}$

L'équation $ax^2 + bx + c = 0$ peut s'écrire : $\left(x + \frac{b}{2a}\right)^2 = 0$

- Si $\Delta > 0$: on a: $ax^2 + bx + c = a(x - x_1)(x - x_2)$

x	$-\infty$	x1		x2	$+\infty$
x-x1	_		_	þ	+
x-x2	_	þ	+		+
(x-x1)(x-x2)	+	þ	_	þ	+

Résumé:

Si $\Delta > 0$ le trinôme $ax^2 + bx + c$ est du signe de \emptyset a l'extérieur des racines et le signe contraire de a entre les racines

\boldsymbol{x}	$-\infty$		x_1		x_2		$+\infty$
f(x)		Signe		Signe		Signe de	
) (2)		$\mathrm{de}\;a$	Ĭ	de -a	ľ	de a	

ightharpoonup Si Δ < 0 : le trinôme $ax^2 + bx + c$ est du signe de a

\boldsymbol{x}	$-\infty$		$+\infty$
f(x)		Signe de a	

Si $\Delta = 0$: le trinôme $ax^2 + bx + c$ est du signe de a

\boldsymbol{x}	$-\infty$		x_0		$+\infty$
f(x)		$_{ m Signe}$	4	$_{ m Signe}$	
, (~)		$\mathrm{de}\;a$	Ĭ	$\mathrm{de}\;a$	

Exemple: Résoudre dans \mathbb{R} les inéquations suivantes : a) $-5x^2 + 6x + 8 \ge 0$

b)
$$2x^2 - (2\sqrt{2} + \sqrt{3})x + \sqrt{6} > 0$$
 c) $16x^2 - \frac{8}{3}x + \frac{1}{9} < 0$

c)
$$16x^2 - \frac{8}{3}x + \frac{1}{9} < 0$$

d)
$$-\frac{1}{2}x^2 + x - 4 < 0$$

Solution: a) $-5x^2 + 6x + 8 \ge 0$: Calculons le discriminant de l'équation $-5x^2 + 6x + 8 = 0$: a = -5; b = 6; c = 8 Donc: $\Delta = b^2 - 4 \times a \times c = 6^2 - 4 \times 8 \times (-5) = 36 + 160 = 196 = 14^2 > 0$

Comme $\Delta > 0$, l'équation possède deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-6 - \sqrt{196}}{2 \times (-5)} = \frac{-6 - 14}{-10} = 2$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-6 + \sqrt{196}}{2 \times (-5)} = \frac{-6 + 14}{-10} = -\frac{4}{5}$

Le tableau de signe est :

x	$-\infty$	-4/5		2	$+\infty$
$-5x^2+6x+8$	_	þ	+	þ	_

Donc: $S = \left| -\frac{4}{5}; 2 \right|$

b) $2x^2 - \left(2\sqrt{2} + \sqrt{3}\right)x + \sqrt{6} > 0$; Calculons le discriminant de l'équation $2x^2 - \left(2\sqrt{2} + \sqrt{3}\right)x + \sqrt{6} = 0$: a = 2; $b = -(2\sqrt{2} + \sqrt{3})$; $c = \sqrt{6}$

Donc:
$$\Delta = b^2 - 4 \times a \times c = \left(-\left(2\sqrt{2} + \sqrt{3}\right)\right)^2 - 4 \times 2 \times \sqrt{6} = \left(2\sqrt{2} + \sqrt{3}\right)^2 - 8 \times \sqrt{6}$$

$$\Delta = (2\sqrt{2} + \sqrt{3})^2 - 8 \times \sqrt{6} = (2\sqrt{2})^2 + 2 \times 2\sqrt{2} \times \sqrt{3} + (\sqrt{3})^2 - 8\sqrt{6}$$

$$\Delta = (2\sqrt{2})^2 + 2 \times 2\sqrt{2} \times \sqrt{3} + (\sqrt{3})^2 - 8\sqrt{2} \times \sqrt{3} = (2\sqrt{2})^2 - 2 \times 2\sqrt{2} \times \sqrt{3} + (\sqrt{3})^2$$

Donc: $\Delta = (2\sqrt{2} - \sqrt{3})^2 > 0$

Comme $\Delta > 0$, l'équation possède deux solutions distinctes :

$$x_{1} = \frac{-b - \sqrt{\Delta}}{2a} = \frac{2\sqrt{2} + \sqrt{3} - \sqrt{\left(2\sqrt{2} - \sqrt{3}\right)^{2}}}{2 \times 2} = \frac{2\sqrt{2} + \sqrt{3} - \left|2\sqrt{2} - \sqrt{3}\right|}{4} = \frac{2\sqrt{2} + \sqrt{3} - \left(2\sqrt{2} - \sqrt{3}\right)}{4} = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{2\sqrt{2} + \sqrt{3} + \sqrt{\left(2\sqrt{2} - \sqrt{3}\right)^2}}{2 \times 2} = \frac{2\sqrt{2} + \sqrt{3} + \left|2\sqrt{2} - \sqrt{3}\right|}{4} = \frac{2\sqrt{2} + \sqrt{3} + \left(2\sqrt{2} - \sqrt{3}\right)}{4} = \frac{4\sqrt{2}}{4} = \sqrt{2}$$

Le tableau de signe est :

x	$-\infty$	$\frac{\sqrt{3}}{2}$		$\sqrt{2}$		$+\infty$
$2x^2 - (2\sqrt{2} + \sqrt{3})x + \sqrt{6}$	+		_	þ	+	

Donc:
$$S = \left[-\infty; \frac{\sqrt{3}}{2} \right] \cup \left[\sqrt{2}; +\infty \right]$$

c)
$$16x^2 - \frac{8}{3}x + \frac{1}{9} < 0$$
: Calculons le discriminant de l'équation $16x^2 - \frac{8}{3}x + \frac{1}{9}$: $a = 16$; $b = -\frac{8}{3}$; $c = \frac{1}{9}$

Donc:
$$\Delta = b^2 - 4 \times a \times c = \left(-\frac{8}{3}\right)^2 - 4 \times 16 \times \frac{1}{9} = \frac{64}{9} - \frac{64}{9} = 0$$

Comme
$$\Delta = 0$$
, l'équation possède une seule solution (dite double): $x_0 = -\frac{b}{2a} = -\frac{-\frac{8}{3}}{2 \times 16} = \frac{1}{12}$

Le tableau de signe est :

x	$-\infty$	$\frac{1}{12}$	$+\infty$
$16x^2 - \frac{8}{3}x + \frac{1}{9}$	+	þ	+

Donc: $S = \emptyset$

d)
$$-\frac{1}{2}x^2 + x - 4 < 0$$
: Calculons le discriminant de l'équation $-\frac{1}{2}x^2 + x - 4 = 0$:

$$a = -\frac{1}{2}$$
; $b = 1$; $c = -4$

Donc:
$$\Delta = b^2 - 4 \times a \times c = 1^2 - 4 \times (-4) \times \left(-\frac{1}{2}\right) = 1 - 8 = -7 < 0$$
 et $a = -\frac{1}{2} < 0$

Le tableau de signe est :

x	$-\infty$	$+\infty$
$-\frac{1}{2}x^2 + x - 4$	-	-

 $\mathsf{Donc}:\,\mathit{S}=\mathbb{R}$

Exercice08: Soit l'équation (E): $x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6} = 0$ et soit Δ son discriminant

- 1) Vérifier que : $\Delta = (2\sqrt{3} + \sqrt{2})^2$
- 2) Résoudre dans \mathbb{R} l'équation (E)
- 3) Résoudre dans \mathbb{R} l'équation P(x)=0
- 4) Résoudre dans \mathbb{R} l'inéquation P(x) > 0
- 5) En déduire les solutions de l'équation : $x + (2\sqrt{3} \sqrt{2})\sqrt{x} 2\sqrt{6} = 0$

Solution: (E): $x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6} = 0$

1)
$$\Delta = b^2 - 4ac = (2\sqrt{3} + \sqrt{2})^2 - 4 \times 1 \times 2\sqrt{6}$$

$$\Delta = 12 - 4\sqrt{6} + 2 + 8\sqrt{6} = 14 + 4\sqrt{6}$$

$$14 + 4\sqrt{6} = 14 + 2 \times 2\sqrt{3} \times \sqrt{2} = (2\sqrt{3})^{2} + 2 \times 2\sqrt{3} \times \sqrt{2} + (\sqrt{2})^{2}$$

$$14 + 4\sqrt{6} = \left(2\sqrt{3} + \sqrt{2}\right)^2$$

2) Résoudre dans \mathbb{R} l'équation (E): $x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6} = 0$

On a $\Delta = 14 + 4\sqrt{6} > 0$ donc

$$x_{1} = \frac{-2\sqrt{3} + \sqrt{2} + \sqrt{14 + 4\sqrt{6}}}{2 \times 1} = \frac{-2\sqrt{3} + \sqrt{2} + \left| 2\sqrt{3} + \sqrt{2} \right|}{2 \times 1} \quad \text{et} \quad x_{2} = \frac{-2\sqrt{3} + \sqrt{2} - \left| 2\sqrt{3} + \sqrt{2} \right|}{2 \times 1}$$

$$x_1 = \frac{-2\sqrt{3} + \sqrt{2} + 2\sqrt{3} + \sqrt{2}}{2 \times 1} = \frac{2\sqrt{2}}{2} = \sqrt{2} \quad \text{et} \quad x_2 = \frac{-2\sqrt{3} + \sqrt{2} - 2\sqrt{3} - \sqrt{2}}{2 \times 1} = \frac{-4\sqrt{3}}{2} = -2\sqrt{3}$$

On a donc: $S = \{\sqrt{2}, -2\sqrt{3}\}$

4) Résoudre dans \mathbb{R} l'inéquation P(x) > 0

x	$-\infty$	-2	2√3	$\sqrt{2}$		$+\infty$
$x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6}$	+	- (-	þ	+	

On a donc: $S = \left[-\infty, -2\sqrt{3}\right] \cup \left[\sqrt{2}, +\infty\right]$

5) en déduire les solutions de l'équation $x + (2\sqrt{3} - \sqrt{2})\sqrt{x} - 2\sqrt{6} = 0$

$$x + \left(2\sqrt{3} - \sqrt{2}\right)\sqrt{x} - 2\sqrt{6} = 0$$
 peut s'écrire sous la forme : $\left(\sqrt{x}\right)^2 + \left(2\sqrt{3} - \sqrt{2}\right)\sqrt{x} - 2\sqrt{6} = 0$

On pose : $X = \sqrt{x}$ On a donc : $X^2 + (2\sqrt{3} - \sqrt{2})X - 2\sqrt{6} = 0$

D'après la question précédente les solutions sont : $X_1 = \sqrt{2}$ et $X_2 = -2\sqrt{3}$

On a donc : $\sqrt{x_1} = \sqrt{2}$ et $\sqrt{x_2} = -2\sqrt{3}$ or l'équation $\sqrt{x_2} = -2\sqrt{3}$ n'a pas de solutions

Donc: $(\sqrt{x_1})^2 = (\sqrt{2})^2$ donc: $x_1 = 2$ On a donc: $S = \{2\}$

Exercice09: Résoudre les inéquations suivantes : 1) $\frac{1}{x^2-x-6} \ge 2$ 2) $\frac{3x+9}{6x+2} \ge \frac{2x+1}{1-x}$

Solution: 1) $\frac{1}{x^2 - x - 6} \ge 2$

a) On va déterminer le domaine de définition de l'inéquation :

Cette inéquation est définie si et seulement si $x^2 - x - 6 \neq 0$

On commence par déterminer les racines du trinôme $x^2 - x - 6$:

Le discriminant est $\Delta = (-1)^2 - 4 \times 1 \times (-6) = 25$ et ses racines sont :

$$x_1 = \frac{1 - \sqrt{25}}{2 \times 1} = -2$$
 et $x_2 = \frac{1 + \sqrt{25}}{2 \times 1} = 3$

Alors le domaine de définition de l'inéquation est : $D_I = \mathbb{R} - \{-2, 3\}$

b) Résolvons l'inéquation : $\frac{1}{x^2 - x - 6} \ge 2$ Signifie que : $\frac{1}{x^2 - x - 6} - 2 \ge 0$

Signifie que : $\frac{-2x^2+2x+13}{x^2-x-6} \ge 0$; On cherche les racines de: $-2x^2+2x+13$

Le discriminant est : $\Delta = 2^2 - 4 \text{ x (-2) x } 13 = 108$

Donc: les racines de $-2x^2 + 2x + 13$ sont: $x_2' = \frac{-2 + \sqrt{108}}{2 \times (-2)} = \frac{1 - 3\sqrt{3}}{2}$ et $x_1' = \frac{-2 - \sqrt{108}}{2 \times (-2)} = \frac{1 + 3\sqrt{3}}{2}$

Donc le tableau des signes est :

x	$-\infty$ $\frac{1-c}{c}$	3√3 2	-2	3 1+3	$\frac{3\sqrt{3}}{2}$ $+\infty$
$-2x^2+2x+13$	- (+	+	+ () –
$x^2 - x - 6$	+	+ (- () +	+
$\frac{-2x^2+2x+13}{x^2-x-6}$	- (+	_	+ () –

L'ensemble des solutions de l'inéquation $\frac{1}{x^2-x-6} \ge 2$ est : $S = \left\lceil \frac{1-3\sqrt{3}}{2}; -2 \right\rceil \cup \left\rceil 3; \frac{1+3\sqrt{3}}{2} \right\rceil$.

2)
$$\frac{3x+9}{6x+2} \ge \frac{2x+1}{1-x}$$

On commence par rassembler tous les termes dans le membre de gauche afin de pouvoir étudier

les signes des trinômes : $\frac{3x+9}{6x+2} \ge \frac{2x+1}{1-x}$ Signifie que : $\frac{3x+9}{6x+2} - \frac{2x+1}{1-x} \ge 0$

Signifie que : $\frac{(3x+9)(1-x)-(2x+1)(6x+2)}{(6x+2)(1-x)} \ge 0$

Signifie que : $\frac{3x-3x^2+9-9x-12x^2-4x-6x-2}{(6x+2)(1-x)} \ge 0$

Signifie que : $\frac{-15x^2-16x+7}{(6x+2)(1-x)} \ge 0$ c'est-à-dire : $\frac{-(15x^2+16x-7)}{-(6x+2)(x-1)} \ge 0$

Signifie que : $\frac{15x^2+16x-7}{(6x+2)(x-1)} \ge 0$

On cherche les racines de : $15x^2+16x-7$

Le discriminant est : $\Delta' = 16^2 - 4 \times (-7) \times 15 = 676 = 26^2$

Donc : les racines de $15x^2 + 16x - 7$: $x_1 = \frac{-16 + 26}{2 \times 15} = \frac{10}{30} = \frac{1}{3}$ et $x_2 = \frac{-16 - 26}{2 \times 15} = \frac{-42}{30} = -\frac{7}{5}$

Donc le tableau des signes est:

x	$-\infty$ -	- 7 –	$-\frac{1}{3}$	1/3	1 +∞
x -1	_	_	_	- (+
6x+2	_	- () +	+	+
$15x^2 + 16x - 7$	+ (-	- () +	+
$\frac{15x^2 + 16x - 7}{(6x+2)(x-1)}$	+ () –	+ () –	+

L'ensemble des solutions de l'inéquation est : $S = \left] -\infty; -\frac{7}{5} \right] \cup \left] -\frac{1}{3}; \frac{1}{3} \right] \cup \left] \mathbf{l}; +\infty \right].$

C'est en forgeant que l'on devient forgeron : Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien