Cours avec Exercices d'application avec solutions

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

http://www.xriadiat.com

Equations et inéquations et systèmes partie1

Présentation globale

Chapitre nº 1

I) Les équations et les inéquations du premier degré a une inconnue.

- 1 Les équations du premier degré a une inconnue
- 2 Les inéquations du premier degré a une inconnue.

I) Les équations et les inéquations du premier degré a une inconnue.

1°) Les équations du premier degré a une inconnue.

Définition : On appelle équations du premier degré a une inconnue toute équation de la forme : ax+b=0 où les coefficients a, b sont des réels donnés et x est l'inconnue

Résoudre l'équation c'est déterminer l'ensemble de toutes les solutions notées : S

Exemples : Résoudre dans \mathbb{R} les équations suivantes :

1)
$$x+3=-x\sqrt{2}-\sqrt{18}$$

2)
$$3(2x+5) = 6x-1$$

1)
$$x+3=-x\sqrt{2}-\sqrt{18}$$
 2) $3(2x+5)=6x-1$ 3) $4(x-2)=6x-2(x+4)$

4)
$$(2x + 3)^2 - (2x + 3)(x - 4) = 0$$
 5) $x^2 - 100 = 0$ 6) $\frac{3}{x+2} - \frac{5}{x-2} = 0$ 7) $\frac{(x-7)(x+3)}{x^2-9} = 0$ 8) $\frac{4x+2}{x-3} = 5$ 9) $|7x-10| = |6+3x|$ 10) $x^3 - 7x = 0$

$$5) \ x^2 - 100 = 0$$

6)
$$\frac{3}{x+2} - \frac{5}{x-2} = 0$$

7)
$$\frac{(x-7)(x+3)}{x^2-9} = 0$$

8)
$$\frac{4x+2}{x-3} = 5$$

9)
$$|7x-10| = |6+3x|$$

10)
$$x^3 - 7x = 0$$

Corrigé: 1) $x+3=-x\sqrt{2}-\sqrt{18}$ Équivaut à : $x+x\sqrt{2}=-3-\sqrt{18}$

Équivaut à
$$x(1+\sqrt{2}) = -3-3\sqrt{2}$$

Équivaut à :
$$x = \frac{-3 - 3\sqrt{2}}{1 + \sqrt{2}} = \frac{-3(1 + \sqrt{2})}{1 + \sqrt{2}} = -3$$

Et par suite : $S = \{-3\}$

2)
$$3(2x+5) = 6x-1$$
 équivaut à $6x+15=6x-1$ équivaut à $6x-6x=-1-15$ équivaut à $0x=-16$

Equivaut à 0 = -16 ceci est impossible

Donc l'ensemble des Solutions est : $S = \emptyset$

3)
$$4(x-2)=6x-2(x+4)$$

Équivaut à
$$4x-8=6x-2x-8$$

Équivaut à
$$4x-4x+8-8=0$$

Équivaut à 0=0 donc tous les réels sont solutions et par suite : $S=\mathbb{R}$

4)
$$(2x + 3)^2 - (2x + 3)(x - 4) = 0$$

Ce qui est équivalent à :
$$(2x+3)(2x+3-x+4) = 0$$

Ce qui est équivalent à :
$$(2x + 3)(x + 7) = 0$$

Donc l'ensemble des Solutions est :
$$S = \{-7, -3/2\}$$

5)
$$x^2 - 100 = 0$$
 équivalent à : $x^2 - 10^2 = 0$

$$a^2 - b^2 = (a - b) (a + b),$$

Équivalent à : (x-10)(x+10)=0

Équivalent à : x-10=0 ou x+10=0

Équivalent à : x=10 ou x=-10

D'où : $S = \{-10, 10\}$

6) $\frac{3}{x+2} - \frac{5}{x-2} = 0$ Cette équation n'existe pas si x+2=0 ou x-2=0.

Les valeurs interdites de cette équation sont -2 et 2.

L'équation est donc définie sur $\mathbb{R}\setminus\{-2; 2\}$.

Le dénominateur commun est : (x+2)(x-2)

$$\frac{3}{x+2} - \frac{5}{x-2} = 0$$
 Équivalent à $\frac{3(x-2)-5(x+2)}{(x+2)(x-2)} = 0$

Équivalent à $\frac{3x-6-5x-10}{(x+2)(x-2)} = 0$

C'est-à-dire : $\frac{-2x-16}{(x+2)(x-2)} = 0$

Donc: -2x-16=0 équivalent à : $x = \frac{16}{-2} = -8$

-8 appartient à l'ensemble de définition de l'équation d'où : $S = \{-8\}$

7)
$$\frac{(x-7)(x+3)}{x^2-9} = 0$$
 Cette équation existe si $x^2 - 9 \neq 0$

 $x^2 - 9 = 0$ Équivalent à : $x^2 - 3^2 = 0$

Équivalent à : (x+3)(x-3)=0

Équivalent à x+3=0 ou x-3=0

Équivalent à : x = -3 ou x = 3

Les valeurs interdites de cette équation sont -3 et 3. L'équation est donc définie sur : $D_E = \mathbb{R} \setminus \{-3, 3\}$.

$$\frac{(x-7)(x+3)}{x^2-9} = 0$$
 Équivalent à $(x-7)(x+3) = 0$ Équivalent à $x-7=0$ ou $x+3=0$

Équivalent à $x=7 \in D_E$ ou $x=-3 \notin D_E$

Donc: $S = \{7\}$

8) $\frac{4x+2}{x-3} = 5$ Cette équation n'existe pas si x-3=0

x-3=0 Équivalent à : x=3

La valeur interdite de cette équation est 3.

L'équation est donc définie sur $D_E = \mathbb{R} \setminus \{3\}$.

$$\frac{4x+2}{x-3} = 5$$
 Équivalent à : $4x+2=5(x-3)$ Équivalent à : $4x+2=5x-15$

Équivalent à : -x = -17 c'est à dire : x = 17

Donc: $S = \{17\}$

9)
$$|7x-10| = |6+3x|$$

Équivalent à: 7x-10=6+3x ou 7x-10=-(6+3x)

Équivalent à : 4x = 16 ou 10x = 4

Équivalent à x=4 ou x=2/5

Donc l'ensemble de toutes les Solutions est : $S = \{4, 2/5\}$

10)
$$x^3 - 7x = 0$$
 Équivalent à : $x(x^2 - 7) = 0$

Équivalent à : x = 0 ou $x^2 - 7 = 0$

Équivalent à x = 0 ou $x^2 = 7$

Équivalent à : x = 0 ou $x = \sqrt{7}$ ou $x = -\sqrt{7}$

D'où: $S = \{-\sqrt{7}; 0; \sqrt{7}\}$

Exercice1: Résoudre dans \mathbb{R} les équations suivantes :1) $(3x+1)(2x-1)-4x^2+1=0$

2)
$$x^3 + 27 + 2(x^2 - 9) - 3x - 9 = 0$$

3)
$$\frac{\sqrt{2}x-1}{x-1} = \frac{2x-2}{\sqrt{2}x-2}$$

Corrigé: 1) $(3x+1)(2x-1)-4x^2+1=0$

Équivalent à : $(3x+1)(2x-1)-(4x^2-1)=0$

Équivaut à : (3x+1)(2x-1)-(2x-1)(2x+1)=0

Équivaut à : (2x-1)[(3x+1)-(2x+1)]=0

Équivaut à : (2x-1)(3x+1-2x-1)=0

Équivaut à : x(2x-1)=0

Équivaut à : x=0 ou 2x-1=0

Équivaut à : x = 0 ou $x = \frac{1}{2}$ d''où : $S = \left\{0, \frac{1}{2}\right\}$

2) $x^3 + 27 + 2(x^2 - 9) - 3x - 9 = 0$

Équivaut à : $x^3 + 3^3 + 2(x^2 - 3^2) - 3(x+3) = 0$

Équivaut à : $(x+3)(x^2-3x+9)+2(x+3)(x-3)-3(x+3)=0$ car : $a^3+b^3=(a+b)(a^2-ab+b^2)$

Équivaut à : $(x+3)[(x^2-3x+9)+2(x-3)-3]=0$

Équivaut à : $(x+3)(x^2-3x+9+2x-6-3)=0$ C'est-à-dire : $(x+3)(x^2-x)=0$

Équivaut à : x(x+3)(x-1)=0

Équivaut à : x=0 ou x+3=0 ou x-1=0

Equivaut à : x=0 ou x=-3 ou x=1

D'où: $S = \{-3,0,1\}$

3)
$$\frac{\sqrt{2}x-1}{x-1} = \frac{2x-2}{\sqrt{2}x-2}$$

Cette équation n'existe pas si : x-1=0 et si $\sqrt{2}x-2=0$

x-1=0 Équivaut à : x=1

$$\sqrt{2}x-2=0$$
 Équivaut à : $x=\frac{2}{\sqrt{2}}=\sqrt{2}$

Les valeurs interdites de cette équation sont :

1 et $\sqrt{2}$.

L'équation est donc définie sur $D_E = \mathbb{R} \setminus \{1; \sqrt{2}\}$.

$$\frac{\sqrt{2}x - 1}{x - 1} = \frac{2x - 2}{\sqrt{2}x - 2}$$

Équivaut à : $(\sqrt{2}x-1)(\sqrt{2}x-2)=(2x-2)(x-1)$

Équivaut à : $2x^2 - 2\sqrt{2}x - \sqrt{2}x + 2 = 2x^2 - 2x - 2x + 2$

Équivaut à : $-3\sqrt{2}x + 4x = 0$

Équivaut à : $\left(-3\sqrt{2}+4\right)x=0$

Équivaut à : $x = 0 \in D_E$ d'où : $S = \{0\}$

Exercice2: Quelle est la longueur d'un rectangle sachant que sa largeur est 6cm et sa surface vaut le double de son périmètre ?

Corrigé : Soit *S* La surface du rectangle *ABCD*

Et P Le périmètre du rectangle ABCD

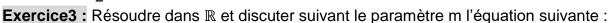
Soit x La longueur du rectangle

On a donc: S = 6x et P = 2(6+x) = 12+2x

$$S = 2P$$
 Signifie $6x = 2(12 + 2x)$

Signifie 6x = 24 + 4x c'est-à-dire : 2x = 24

Signifie
$$x = \frac{24}{2} = 12cm$$



$$(m-2)x+3mx-(m-x)-5=0$$

Corrigé : On va écrire cette équation sous la forme : ax+b=0

$$(m-2)x+3mx-(m-x)-5=0$$

Équivalent à : mx-2x+3mx-m+x-5=0

Équivalent à : (m-2+3m+1)x-m-5=0

Équivalent à : (4m-1)x-m-5=0

1ére cas : $4m-1 \neq 0$ c'est à dire : $m \neq \frac{1}{4}$

(4m-1)x-m-5=0 Équivalent à : (4m-1)x=m+5

Donc : L'équation admet une solution unique :
$$x = \frac{m+5}{4m-1}$$
 Par suite : $S = \left\{\frac{m+5}{4m-1}\right\}$

6cm

2ére cas : 4m-1=0 c'est à dire : $m=\frac{1}{4}$

L'équation devient : $\left(4 \times \frac{1}{4} - 1\right)x - \frac{1}{4} - 5 = 0$

Équivalent à : $0x - \frac{21}{4} = 0$ ce qui est impossible

Par suite : $S = \emptyset$

2°) Les inéquations du premier degré a une inconnue.

a) Le signe du binôme ax+b $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$

Résumé : $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$

٦.							
ſ			-b				
ı	x	$-\infty$	_		$+\infty$		
ŀ			a				
-1	ax + b	signe de	0	signe de			
-1		_	1	_			
-1		-a		\boldsymbol{a}			

b) Solution de l'inéquations du premier degré a une inconnue

Définition : On appelle inéquations du premier degré a une inconnue toute inéquation de la forme : $ax+b \ge 0$

ou $ax+b \le 0$ ou ax+b < 0 ou ax+b > 0 où les coefficients a, b sont des réels donnés et x est l'inconnue

Résoudre l'inéquation c'est déterminer l'ensemble de toutes les solutions notées : S

Exemple: Etudier le signe de : 3x+6 et -2x+12

Corrigé: a) 3x+6=0 Equivalent à : x=-2

3x+6>0 Équivalent à : x>-23x+6<0 Équivalent à : x<-2

On résume ces résultats dans le tableau de signe suivant :

x	$-\infty$	-2	$+\infty$
3x+6	_	Ó	+

b) le signe de : -2x+12 (coefficient de x négatif)

-2x+12 Équivalent à : x=6

-2x+12>0 Équivalent à : x<6 et -2x+12<0 Équivalent à : x>6

On résume ces résultats dans le tableau de signe suivant :

x	$-\infty$	6	$+\infty$
-2x+12	+	ģ	_

Exercice4: Résoudre dans \mathbb{R} les inéquations suivantes :

1)
$$2x-10>0$$

2)
$$-3x+9 \le 0$$

3)
$$-2x+1>x-8$$

2)
$$-3x+9 \le 0$$
 3) $-2x+1 > x-8$ 4) $(x+2)\sqrt{5} + (2-x)\sqrt{7} \ge 0$

5)
$$\frac{4x-1}{\sqrt{2}-2} < \frac{4x-3}{\sqrt{2}+2}$$
 6) $16x^2-100 \le 0$ 7) $(-2x+6)(x+2) > 0$ 8) $\frac{2x+8}{x+1} \ge 0$

6)
$$16x^2 - 100 \le 0$$

7)
$$(-2x+6)(x+2) > 0$$

8)
$$\frac{2x+8}{x+1} \ge 0$$

9)
$$\frac{(2x+8)(2x-10)}{2x+4} \le 0$$

Corrigé :1) 2x-10>0

2x-10=0 Equivalent à : x=5 avec a=2>0 coefficient de x positif

On a le tableau de signe suivant :

x	$-\infty$	5	$+\infty$
2x-10	_	Ó	+

Donc: $S =]-\infty;5[$

2) $-3x+9 \le 0$

-3x+9=0 Équivalent à : x=3 avec a=-3<0 coefficient de x négatif

On a le tableau de signe suivant :

			_
x	$-\infty$	3	$+\infty$
-3x+9	+	Ò	_

Donc: $S = [3; +\infty]$

3) -2x+1>x-8 Équivalent à : -3x>-9 Équivalent à : $x<\frac{-9}{3}$

Equivalent à : x < 3

L'ensemble de solution est alors : $S =]-\infty;3[$

4) $(x+2)\sqrt{5} + (2-x)\sqrt{7} \ge 0$ Équivalent à : $x\sqrt{5} - x\sqrt{7} + 2\sqrt{5} + 2\sqrt{7} \ge 0$

Équivalent à : $x(\sqrt{5}-\sqrt{7}) \ge -2(\sqrt{5}+\sqrt{7})$ Équivalent à : $x \le -2(\frac{\sqrt{5}+\sqrt{7}}{\sqrt{5}-\sqrt{7}})$ car $\sqrt{5}-\sqrt{7}<0$

Équivalent à : $x \le -2 \frac{\left(\sqrt{5} + \sqrt{7}\right)^2}{\sqrt{5}^2}$ Équivalent à : $x \le -2 \frac{\left(\sqrt{5} + \sqrt{7}\right)^2}{5 - 7}$

Équivalent à : $x \le (\sqrt{5} + \sqrt{7})^2$ Équivalent à : $x \le (\sqrt{5})^2 + 2\sqrt{5}\sqrt{7} + (\sqrt{7})^2$

Équivalent à : $x \le 12 + 2\sqrt{35}$

L'ensemble de solution est alors : $S = \left| -\infty; 12 + 2\sqrt{35} \right|$

5) $\frac{4x-1}{\sqrt{2}-2} < \frac{4x-3}{\sqrt{2}+2}$ Équivalent à : $\frac{4x-1}{\sqrt{2}-2} - \frac{4x-3}{\sqrt{2}+2} < 0$

Équivalent à :
$$\frac{(4x-1)(\sqrt{2}+2)-(\sqrt{2}-2)(4x-3)}{(\sqrt{2}+2)(\sqrt{2}-2)} < 0$$

Équivalent à :
$$\frac{4\sqrt{2}x + 8x - \sqrt{2} - 2 - 4\sqrt{2}x + 3\sqrt{2} + 8x - 6}{2 - 4} < 0$$

Équivalent à :
$$\frac{16x + 2\sqrt{2} - 8}{-6} < 0$$
 Équivalent à : $16x + 2\sqrt{2} - 8 > 0$

Équivalent à :
$$16x > 8 - 2\sqrt{2}$$
 c'est-à-dire : $x > \frac{8 - 2\sqrt{2}}{16}$ c'est-à-dire : $x > \frac{4 - \sqrt{2}}{8}$

Par suite :
$$S = \left[\frac{4 - \sqrt{2}}{8}; +\infty \right]$$

6)
$$16x^2 - 100 \le 0$$

$$16x^2 - 100 \le 0$$
 Équivalent à : $(4x)^2 - 10^2 \le 0$ donc : $(4x - 10)(4x + 10) \le 0$

$$(4x-10)(4x+10) = 0$$
 Équivalent à : $4x-10=0$ ou $4x+10=0$

Équivalent à :
$$x = -\frac{5}{2}$$
 ou $x = \frac{5}{2}$

On a le tableau de signe suivant :

x	$-\infty$	-5/2	5	5/2	$+\infty$
4x-10	_		-	þ +	
4x+10	_	þ	+	+	
(4x-10)(4x+10)	+	þ	_	þ +	

Donc:
$$S = \left[-\frac{5}{2}; \frac{5}{2} \right]$$

7)
$$(-2x+6)(x+2) > 0$$

$$(-2x+6)(x+2)=0$$
 Équivalent à : $-2x+6=0$ ou $x+2=0$

Équivalent à :
$$x=3$$
 ou $x=-2$

On a le tableau de signe suivant :

x	$-\infty$	-2		3	$+\infty$
-2x+6	+		+	þ	_
x+2	_	þ	+		+
(-2x+6)(x+2)	_	þ	+	þ	_

Donc:
$$S =]-2;3[$$

8)
$$\frac{2x+8}{x+1} \ge 0$$
 (Signe d'un quotient méthode)

- Donner l'ensemble de définition.
- Rechercher les valeurs de x annulant chacun des facteurs et Dresser un tableau de signes : Le quotient de deux nombres de même signe est positif (+).

Le quotient de deux nombres de signes différents est négatif

Cette inéquation existe si $x+1 \neq 0$

$$x+1=0$$
 Équivalent à : $x=-1$

La valeur interdite de cette inéquation est -1. L'inéquation est donc définie sur : $D_I = \mathbb{R} - \{-1\}$

$$2x+8=0$$
 Équivalent à : $x=-4$

On a le tableau de signe suivant :

x	-∞ -	4	-1	$+\infty$
2x+8	- (+		+
x+1	_	_	þ	+
$\frac{2x+8}{x+1}$	+ (-		+

Attention à ne pas oublier la double barre pour la valeur interdite

Donc: $S =]-\infty; -4] \cup]-1; +\infty[$

9)
$$\frac{(2x+8)(2x-10)}{2x-4} \le 0$$
: Cette inéquation existe si $2x-4 \ne 0$

 $2x-4\neq 0$ Équivalent à : $x\neq 2$

La valeur interdite de cette inéquation est 2. L'inéquation est donc définie sur : $D_I = \mathbb{R} - \{2\}$

 $2x-6 \neq 0$ Équivalent à : $x \neq 3$

On a le tableau de signe suivant : $D_t = \mathbb{R} - \{2\}$

2x+8=0 Équivalent à : x=-4 et 2x-10 Équivalent à : x=5

Exercice5: Un camion pesant à vide deux tonnes doit passer sur un pont limité à 6 tonnes.

Combien de caisses de 350 kg peut-il transporter?

Corrigé : Choix de l'inconnue

Soit x le nombre de caisses, on a : Chargement du camion : 350x

Poids total du camion : 350x+2000 (le camion à vide pèse 2 t).

Mise en inéquation

On sait que le poids du camion ne doit pas dépasser 6 tonnes.

On peut traduire cette donnée par l'inéquation : $350x + 2000 \le 6000$

Résolution de l'inéquation : $350x \le 6000 - 2000$ Signifie que : $350x \le 4000$

Signifie que : $x \le \frac{4000}{350}$ Signifie que : $x \le 11,42...$

Réponse à la question : Le nombre de caisses doit être inférieur ou égal à 11.

Exercice6: Résoudre dans \mathbb{R} les inéquations suivantes : 1) $\frac{2x+1}{x+2} \ge 3$ 2) $\frac{1}{x} < \frac{1}{2x-1}$

Corrigé : Méthode : Pour résoudre une inéquation du type : $A(x) \ge B(x)$ (ou A(x) > B(x) ou $A(x) \le B(x)$ ou A(x)

- 1. On déterminer le domaine de définition de l'inéquation
- 2. On se ramène à une comparaison à zéro et on factorise.
- 3. On fait un tableau de signes et on donne le résultat sous forme d'intervalle.

1)
$$\frac{2x+1}{x+2} \ge 3$$

• 1. On va déterminer le domaine de définition de l'inéquation :

Cette inéquation est définie si et seulement si $x+2\neq 0$ qui signifie que : $x\neq -2$

Donc : le domaine de définition de l'inéquation est : $D_I = \mathbb{R} - \{-2\}$

• 2. On se ramène à une comparaison à zéro et on factorise.

$$\frac{2x+1}{x+2} \ge 3$$
 Signifie que : $\frac{2x+1}{x+2} - 3 \ge 0$ Signifie que : $\frac{2x+1}{x+2} - \frac{3(x+2)}{x+2} \ge 0$

Signifie que : $\frac{2x+1-3x-6}{x+2} \ge 0$ Signifie que : $\frac{-x-5}{x+2} \ge 0$

• 3. On fait un tableau de signes et on donne le résultat sous forme d'intervalle.

-x-5=0 Équivaut à : x=-5 et x+2=0 qui signifie que : x=-2

Remarque : - 2 est une valeur interdite car elle annule le dénominateur x+2

x	$-\infty$	-5	_	-2	$+\infty$
-x - 5	+	0	-	_	
x + 2	_		-	0 +	
$\frac{-x-5}{x+2}$	_	0	+	_	

On cherche à résoudre l'inéquation : $\frac{-x-5}{x+2} \ge 0$

Donc: S = [-5, -2[

2)
$$\frac{1}{x} < \frac{1}{2x-1}$$

• 1. On va déterminer le domaine de définition de l'inéquation :

Cette inéquation est définie si et seulement si $x \ne 0$ et $2x-1\ne 0$ qui signifie que : $x\ne 0$ ou $x\ne \frac{1}{2}$

Donc : le domaine de définition de l'inéquation est : $D_I = \mathbb{R} - \left\{0, \frac{1}{2}\right\}$

• 2. On se ramène à une comparaison à zéro et on factorise.

$$\frac{1}{x} < \frac{1}{2x-1}$$
 Signifie que : $\frac{1}{x} - \frac{1}{2x-1} < 0$ Signifie que : $\frac{2x-1}{x(2x-1)} - \frac{x}{x(2x-1)} < 0$

Signifie que :
$$\frac{2x-1-x}{x(2x-1)} < 0$$
 Signifie que : $\frac{x-1}{x(2x-1)} < 0$

• 3. On fait un tableau de signes et on donne le résultat sous forme d'intervalle.

$$x-1=0$$
 Équivaut à : $x=1$ et $2x-1=0$ qui signifie que : $x=\frac{1}{2}$

Remarque : 0 et $\frac{1}{2}$ sont des valeurs interdites car elle annule les dénominateurs x et 2x-1

x	-∞	0	1 2	1 +∞
x	- (0 +	+	+
x-1	-	_	-	9 +
2x - 1	-	_) +	+
$\frac{x-1}{x(2x-1)}$	_	+	- (0 +

On cherche à résoudre l'inéquation : $\frac{x-1}{x(2x-1)} < 0$

Donc: $S =]-\infty, 0[\cup] \frac{1}{2}, 1[$

x	-∞ -	-4	5	2 +∞
2x+8	_	+	+	+
2x-10	_	_	+	+
2x-4	_	_	o -	+
$\tfrac{(2x+8)(2x-10)}{(2x-4)}$	_	+	 	+

Donc: $S =]-\infty; -4] \cup [5; 2[$

II) Les équations et les inéquations du premier degré avec deux inconnues.

1)Les équations du premier degré avec deux inconnues.

Définition : On appelle équations du premier degré a deux inconnues toute équation de la forme : ax+by+c=0 où les coefficients a, b et c sont des réels donnés et le couple (x;y) est l'inconnue dans \mathbb{R}^2

Résoudre l'équation dans \mathbb{R}^2 c'est déterminer l'ensemble S des couples solutions de l'équation Remarques :

- L'équation ax + by + c = 0 a une infinité de solutions
- On peut Résoudre l'équations ax + by + c = 0 graphiquement ou algébriquement (D') ; (D").

Exercice7: Résoudre dans \mathbb{R}^2 les équations suivantes : 1) 2x - y + 4 = 0 2) x - 2y + 1 = 0;

Corrigé: 1) Résolvons dans \mathbb{R}^2 l'équation : 2x - y + 4 = 0

On a 2x-y+4=0 équivalent à : y=2x+4

Donc: $S = \{(x; 2x+4) | x \in \mathbb{R} \}$

2) Résolvons dans \mathbb{R}^2 l'équation : x-2y+1=0

On a x-2y+1=0 équivalent à : x=2y-1

Donc: $S = \{(2y-1; y) \mid y \in \mathbb{R}\}$

Exercice8: Résoudre Dans \mathbb{R}^2 l'inéquation : 2x-y-2>0

Corrigé: De l'inéquation précédente on en déduit : l'équation de la droite (D) : 2x-y-2=0

Cette droite passe par les points A(0;-2) et B(1;0) et détermine deux demi-plans P_1 et P_2

(Il nous reste à trouver lequel des deux demis plans qui est la Solution de l'inéquation.) (Nous choisissons un point pris dans l'un des demi-plans, relevons ses coordonnées et nou

(Nous choisissons un point pris dans l'un des demi-plans, relevons ses coordonnées et nous contrôlons si ce point vérifie l'inéquation.

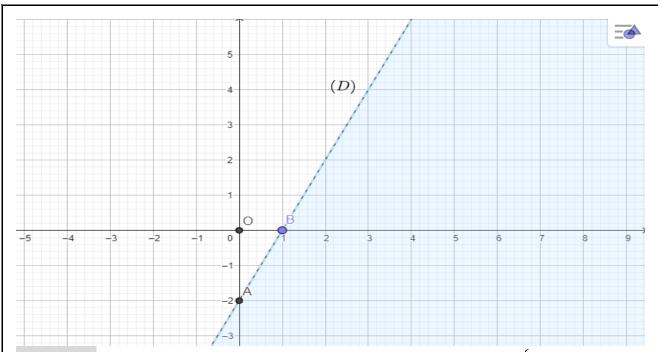
Conseil: On choisit, de référence, le point « O » de coordonnées (0;0); c'est-à-dire x=0 et y=0. Les calculs sont donc simplifiés. (Si la droite passe par « O », on prendra un autre point...)

Soit O(0;0) On a $2 \times 0 - 0 - 2 < 0$

Donc : les coordonnes (0 ; 0) ne vérifie pas l'inéquation.

Donc les Solutions de l'inéquation 2x-y-2<0 est l'ensemble des couple (x; y) des points

M(x;y) du demi- plan P_1 colorée en bleu qui ne contient pas le point O(0;0) et privé de la droite (D)



Exercice9: Résoudre Dans \mathbb{R}^2 le système d'inéquations suivant : S $\begin{cases} x+y-1 \ge 0 \\ -x+2y+2 \le 0 \end{cases}$

Corrigé: L'équation de la droite (D_1) : x + y - 1 = 0

L'équation de la droite (D_2) : -x+2y+2=0

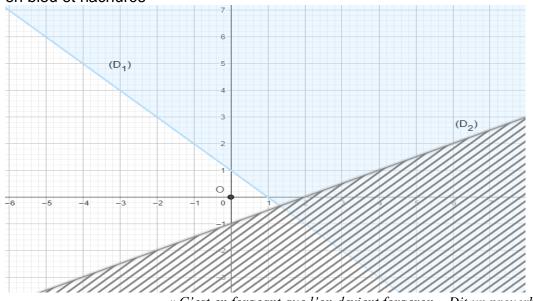
Soit O(0;0) On a $0+0-1\geq 0$ équivalent à : $-1\geq 0$

Donc : les coordonnes O(0;0) ne vérifie pas l'inéquation. $x+y-1 \ge 0$

Soit O(0,0) On a $-0+2\times0+2\leq0$ Équivalent à : $2\leq0$

Donc : les coordonnes O(0,0) ne vérifie pas l'inéquation. $-x+2y+2 \le 0$

Donc les Solutions du système est l'ensemble des couple (x; y) des points M(x; y) du plan coloré en bleu et hachurés



« C'est en forgeant que l'on devient forgeron » Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices

有

Que l'on devient un mathématicien