I. <u>Définition d'un polynôme –égalité de deux polynômes –opérations sur les polynômes</u>

<u>Activité</u>

Soit un parallélépipède dont les dimensions sont x, x+3 et x+5 avec x est un réel. Calculer V(x) le volume du parallélépipède.

Réponse :

$$V(x) = x(x+3)(x+5)$$

= $x^3 + 8x^2 + 15x$

L'expression $V(x) = x^3 + 8x^2 + 15x$ s'appelle **polynôme** (ou fonction polynôme) de degré 3 et on écrit deg(v(x)) = 3 ou $d^{\circ}v = 3$

1. Définition d'un polynôme

On appelle polynôme (ou fonction polynôme) ,se note souvent P ,une expression (ou fonction) de la forme : $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0 x^0 = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$

Où $a_{\scriptscriptstyle n}, a_{\scriptscriptstyle n-1}$, $a_{\scriptscriptstyle 0}$ sont des nombres réels et s'appellent les **coefficients** du polynôme P.

Si $a_n \neq 0$ alors n s'appelle le degré du polynôme P et se note $d \circ P$ tel que $d \circ P = n$

Si tous les coefficients sont nuls alors le polynôme P s'appelle le polynôme nul (sans degré).

Exemple :

On considère l'expression suivante $P(x) = -5x^4 + 3x^2 + 4x - 7$

P(x) est un polynôme de degré 4 ; on écrit $d^{\circ}P = 4$

Les nombres réels -5, 0,3, 4,-7 sont les coefficients de P(x) car on peut écrire P(x) sous forme

$$P(x) = -5x^4 + 0x^3 + 3x^2 + 4x - 7.$$

Remarque :

Soit a un nombre réel non nul.

" P(x) = ax + b" est le polynôme de degré 1 s'appelle binôme.

" $P(x) = ax^2 + bx + c$ " est un polynôme de degré 2 s'appelle trinôme.

<u>Exemple :</u>

P(x) = 2x - 3 est un binôme. // $P(x) = -3x^2 + 2x + 4$ est un trinôme.

Application:

- 1) Donner l'expression d'un polynôme P(x) dont le degré est 6 et ses coefficients sont -1, 0, 0,-3,1 et 2.
- 2) Parmi les expressions suivantes, préciser celles qui représentent un polynôme en précisant son degré.

$$P(x) = \frac{1}{4}x^{3} + \frac{\sqrt{2}}{2}x^{2} - 3 \qquad ; \qquad Q(x) = 2x^{2} - x - \sqrt{x} \qquad ; \qquad R(x) = 5|x|^{2} + 4|x| - 5 ;$$

$$S(x) = (a - 1)x^{4} + x + 1; (a \in \mathbb{R})$$

2. Egalité de deux polynômes

Propriété :

Soient P(x) et Q(x) deux polynômes.

On dit que P(x) et Q(x) Sont **égaux** si et seulement si :

- Ils ont même degré
- •Les coefficients des termes en même degré sont deux à deux égaux .

Signifier que : si $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ et $Q(x) = b_m x^m + b_{m-1} x^{m-1} + ... + b_0$

Alors
$$\begin{cases} d^{\circ}P = d^{\circ}Q \Leftrightarrow n = m \\ a_n = b_m; a_{n-1} = b_{m-1}; \dots; a_0 = b_0 \end{cases}$$

Exemple

Etudions l'égalité de P(x) et Q(x) tels que :

 $P(x) = 4x^3 + 3x^2 - 4x + 1$ Et $Q(x) = 3x^2 + x^3 - 4x + 1 + 3x^3$ $\int d^{\circ} p = d^{\circ} Q = 3$ PROF: ATMANI NAJIB
Tronc commun sciences

les termes de même degré ont mêmes coefficients

Alors P(x) = Q(x)

Application

- 1) Etudier l'égalité de P(x) et Q(x) dans les cas suivants :
 - a) $P(x) = x^3 3x^2 + 3x 1$; $Q(x) = (x+1)^3$
 - b) $P(x) = x^3 + (x-1)^2$; $Q(x) = x^2 3x + 4$
 - c) $P(x) = x^3 + 2x^2(x-1) + x$; $Q(x) = x^2(3x-2) + x$
- 2) Déterminer le nombre réel a pour que P(x) = Q(x)
- $P(x) = (a-1)x^3 + 2ax^2 + 5x + 6$; $Q(x) = x^3 + 4x^2 + (3+a)x + 3a$
- 3) Déterminer a et b et c et d pour que P(x) = Q(x)
 - $P(x) = ax^3 + (b-2)x^2 + (4-c)x + d$; $Q(x) = -3x^3 + x^2 + 7$

3. Operations sur les polynômes

a. Somme de deux polynômes

Soient P(x) et Q(x) deux polynômes

La somme de P(x) et Q(x) est le polynôme qu'on note P+Q tel que : (P+Q)(x) = P(x) + Q(x)

Exemples:

• On a: $P(x) = x^4 - x^3 + 2x^2 - 1$ et $Q(x) = 3x^3 - 2x^2 + 2x - 4$

Donc $P(x) + Q(x) = x^4 + 2x^3 + 2x - 5$

• On a $P(x) = 2x^2 + 3x + 4$ et $Q(x) = -2x^2 + x - 1$

Donc P(x) + Q(x) = 4x + 3

Remarque :

Si P(x) et Q(x) deux polynômes non nuls et P+Q un polynôme non nul alors on a

 $d^{\circ}(P+Q) \le d^{\circ}P$ OU $d^{\circ}(P+Q) \le d^{\circ}Q$

b. Produit de deux polynômes

Soient P(x) et Q(x) deux polynômes.

Le produit de P(x) et le polynôme qu'on note $P \times Q$ tel que $(P \times Q)(x) = P(x) \times Q(x)$

Exemple :

On a $P(x) = x^2 + 1$ et Q(x) = x - 1

Donc $P(x) \times Q(x) = (x^2 + 1)(x - 1) = x^3 - x^2 + x - 1$

Remarque:

Si P(x) et Q(x) deux polynômes non nuls, alors on a $d^{\circ}(P \times Q) = d^{\circ}P + d^{\circ}Q$

Application

On considère les deux polynômes suivants

$$f(x) = 2x^2 + 3x - 2$$
 et $g(x) = x^3 - x^2 + 1$

Calculer les expressions suivantes

$$A(x) = 2f(x) - 3g(x)$$
; $B(x) = f(x) \times g(x)$; $C(x) = (f(x))^2$ et $D(x) = (g(x))^2$

II. La divisions par $x - \alpha$

1. La division euclidienne d'un polynôme par $x - \alpha$

a. Définition et propriété

PROF: ATMANI NAJIB
Tronc commun sciences

Soit P(x) un polynôme de degré $n (n \in \mathbb{N}^*)$ et soit $\alpha \in \mathbb{R}$.

S'il existe un polynôme Q(x) qui vérifié : $P(x) = (x - \alpha)Q(x) + P(\alpha)$; alors :

- Q(x): S'appelle **quotient** de la division euclidienne de P(x) par $x-\alpha$.
- $P(\alpha)$: S'appelle reste de la division euclidienne de P(x) par $x-\alpha$.

Exemple
$$P(x) = x^2 - 8$$

$$x-\alpha=x-3$$

On a
$$P(x) = (x-3)(x+3)+1$$

Donc : x+3 est le quotient de la division euclidienne de P(x) par x-3

1: est le reste de la division euclidienne de P(x) par x-3.

b. Racine d'un polynôme

Définition

Soit P(x) un polynôme et $\alpha \in \mathbb{R}$

On dit que α est une racine de P(x) si et seulement si $P(\alpha) = 0$

Exemple

Parmi les nombres suivants déterminons qui sont les racines de P(x)

$$P(x) = x^2 - 2x + 1$$
 / 1, -2 et 3

c. La division euclidienne de P(x) sur $x - \alpha$

Pour effectuer la division euclidienne de P(x) par $x-\alpha$, on suit même étapes que celle des nombres entiers naturels.

<u>Exemple</u>

Effectuons la division euclidienne de $P(x) = 2x^3 + x^2 - x + 1$ par x + 1

2. La divisibilité par $x - \alpha$

Soit P(x) un polynôme et $\alpha \in \mathbb{R}$ avec $d^{\circ}P = n$

- Ont dit que P(x) est divisible par $x \alpha$, s'il existe un polynôme Q(x) de degré n-1 tel que $P(x) = (x \alpha)Q(x)$
- P(x) est divisible par $x \alpha$ si et seulement si α est un zéro ou racine de P(x)

Exemple

On considère le polynôme suivant : $P(x) = x^3 - 3x^2 - 6x + 8$

Etudier la divisibilité de P(x) par x-1.