Cours avec Exercices d'application avec solutions

PROF: ATMANI NAJIB Tronc commun Sciences BIOF

http://www.xriadiat.com

Leçon: Les polynômes

Présentation globale

- I) Définition d'un polynôme
- II) Les polynômes et les opérations
- III) La valeur absolue et propriétés La division par x a et factorisation de polynômes

I) Définition d'un polynôme

Activité : Soit un parallélépipède rectangle dont les dimensions : x , x+3 et x+5 avec x réel strictement positif. Soit V(x) le volume de ce parallélépipède

- 1) Montrer que $V(x) = x^3 + 8x^2 + 15x$
- 2) Calculer V(1) et V(2)?
- 3) Quelles opérations as-tu utilisé pour calculer :V(1) et V(2) ?
- 1) Vocabulaire :L'expression : $V(x) = x^3 + 8x^2 + 15x$ est appelée polynôme de degré 3 On note $\deg V = 3$

Les réels 1, 8, 15,0 sont appelés coefficients du polynôme V(x).

8x² est un monôme de degré 2 et de coefficient 8.

x³ est un monôme, de degré 3 et de coefficient 1.

15x est un monôme, de degré 1 et de coefficient 15.

2) Définition : Un polynôme est une somme de monômes.

Un polynôme de la variable x sera noté souvent : P(x), Q(x), ... Le degré du polynôme P, noté $\deg P$, est celui de son monôme de plus haut degré.

Exemple1 : Déterminer parmi les expressions suivantes ceux qui sont des polynômes et déterminer si c'est possible leurs degrés :

$$P(x) = \frac{1}{4}x^3 + \frac{\sqrt{2}}{2}x^2 - \sqrt{3}$$
; $Q(x) = 2x^2 - x - \sqrt{x}$; $R(x) = 5|x|^2 + 4|x| - 5$;

$$E(x) = (a-1)x^4 + x^2 + x + 1$$
; $F(x) = (x-3)^2 - 4(5+x^6) + 9 + 5(4x^6 + x^3)$

$$M(x) = \frac{5}{3}x^2 + x + 2 - 7x^4$$
; $N(x) = x^2 + \frac{1}{x}x + 3$; $O(x) = 4$

Solution: P(x) est un polynôme et $d^{\circ}P = 3$

- Q(x) et R(x) et N(x) ne sont pas des polynômes
- M(x) Est un polynôme et $d^{\circ}M = 4$
- O(x) Est un polynôme et $d^{\circ}O = 0$
- E(x) Est un polynôme :

Si $a-1\neq 0$ c'est-à-dire : $a\neq 1$ alors $d^{\circ}E=4$

Si a=1 alors $d^{\circ}E=2$

$$F(x) = (x-3)^2 - 4(5+x^6) + 9 + 5(4x^6+x^3)$$
 Signifie que : $F(x) = x^2 - 6x + 9 - 20 - 4x^6 + 9 + 4x^6 + 2x^3$

Donc: $F(x) = 2x^3 + x^2 - 6x - 2$ par suite: $d^{\circ}F = 3$

Exemple2 : Développer ; Réduire et ordonner et déterminer le degré du polynôme suivant :

$$P(x) = (2x-1)^3 + 3(x+1)(1-x) - 2x^2(2x-5)$$

Solution: $P(x) = (2x-1)^3 + 3(x+1)(1-x) - 2x^2(2x-5)$

$$P(x) = (2x)^3 - 3(2x)^2 \times 1 + 3(2x) \times 1^2 - 1^3 + 3(1-x^2) - 4x^3 + 10x^2$$

$$P(x) = 8x^3 - 12x^2 + 6x - 1 + 3 - 3x^2 - 4x^3 + 10x^2$$

$$P(x) = 8x^3 - 4x^3 - 12x^2 + 10x^2 - 3x^2 + 6x - 1 + 3$$

$$P(x) = 4x^3 - 5x^2 + 6x + 2$$
; Par suite: $d^{\circ}P = 3$

Exercice1: discuter suivant le paramètre m le degré du polynôme P(x):

$$P(x) = (m^2 - m)x^3 - (m^2 - 1)x^2 + mx - 1$$

Solution:
$$P(x) = (m^2 - m)x^3 - (m^2 - 1)x^2 + mx - 1$$

$$m^2 - m = 0$$
 Signifie que : $m(m-1) = 0$

Signifie que : m-1=0 ou m=0

Signifie que : m=1 ou m=0

• Si $m \ne 1$ et $m \ne 0$ alors : $m^2 - m \ne 0$ et par suite : $d^{\circ}P = 3$

• Si m=0 alors: le polynôme devient: $P(x) = (0^2 - 0)x^3 - (0^2 - 1)x^2 + 0x - 1$

c'est-à-dire : $P(x) = x^2 - 1$ et par suite : $d^{\circ}P = 2$

• Si m=1 alors: le polynôme devient: $P(x) = (1^2 - 1)x^3 - (1^2 - 1)x^2 + 1x - 1$

c'est-à-dire : P(x) = x-1 et par suite : $d^{\circ}P = 1$

Exercice2: Déterminer un polynôme P de degré 2 tel que : P(0) = P(1) = 5 et P(-2) = 3

Solution: P de degré 2 donc P s'écrit sous la forme : $P(x) = ax^2 + bx + c$

On a P(0) = 5 donc $a \times 0^2 + b \times 0 + c = 5$ par suite : c = 5

On a P(1) = 5 donc $a \times 1^2 + b \times 1 + c = 5$ c'est-à-dire : a + b + c = 5 donc a + b + 5 = 5

Donc: a+b=0 1

On a P(-2)=3 donc $a\times(-2)^2+b\times(-2)+5=3$ c'est-à-dire: 4a-2b+5=3

Donc 4a - 2b = -2(2)

Donc : on a le système suivant : $\begin{cases} 4a-2b=-2 \\ a+b=0 \end{cases}$ donc : $\begin{cases} 4a-2b=-2 \\ b=-a \end{cases}$

Par suite : 4a + 2a = -2 donc : 6a = -2

Donc: $a = -\frac{1}{3}$ donc: $b = \frac{1}{3}$ Alors: $P(x) = -\frac{1}{3}x^2 + \frac{1}{3}x + 5$

4) Egalité de deux polynômes :

Définition: Deux polynômes P et Q sont égaux et on écrit P = Q si et P(x) = Q(x) Pour tout x réel

Propriété : Deux polynômes P et Q sont égaux si et seulement s'ils ont le même degré et les coefficients de leurs monômes de même degré sont égaux.

Exemple: (*) Lesquels des polynômes ci-dessous sont égaux ? Expliquez

$$P(x) = 2x^3 - 2x^2 + x - 3$$
 et $Q(x) = 2x^2(x - 2) + (x - 1)(2x + 3)$ et $R(x) = 2x^3 + 3x^2 - 2x - 3$

Solution:
$$Q(x) = 2x^2(x-2) + (x-1)(2x+3) = 2x^3 - 4x^2 + 2x^2 + 3x - 2x - 3$$

$$Q(x) = 2x^3 - 2x^2 + x - 3$$
 Donc $\deg(Q) = 3$

Donc : P(x) = Q(x) car : deg(P) = deg(Q) = 3 et les coefficients de leurs termes de même Degré sont égaux.

Mais $P(x) \neq R(x)$ car les coefficients de leurs monômes de même degré ne sont pas égaux

Exercice3: Soit les polynômes suivants : $P(x) = 12x^4 - 36x^3 + 47x^2 - 30x + 7$

$$Q(x) = (2x^2 - 3x + 1)(ax^2 + bx + c)$$

Déterminer a; b; c sachant que: P = Q

Solution: P = Q si et seulement si P(x) = Q(x) pout tout x

$$Q(x) = (2x^2 - 3x + 1)(ax^2 + bx + c) = 2ax^4 + 2bx^3 + 2cx^2 - 3ax^3 - 3bx^2 - 3cx + ax^2 + bx + c$$

$$Q(x) = 2ax^{4} + (2b - 3a)x^{3} + (2c - 3b + a)x^{2} + (b - 3c)x + c$$

Donc:
$$\begin{cases} 2a = 12 \\ 2b - 3a = -36 \\ a - 3b + 2c = 47 \text{ c'est-à-dire} : \begin{cases} a = 0 \\ b = -9 \\ c = 7 \end{cases}$$

On vérifie que : a-3b+2c=47 est vraie

Donc: $Q(x) = (2x^2 - 3x + 1)(6x^2 - 9x + 7)$

II) Les polynômes et les opérations

1) Activité : Soient P(x) et Q(x) deux polynômes

I) Calculer dans chacun des cas suivants : P(x)+Q(x); P(x)-Q(x); 3P(x)-2Q(x)

1)
$$P(x) = x^3 + 2x^2 - 1$$
; $Q(x) = 3x^4 - x^3 + x$

2)
$$P(x) = x^5 - x^2 + 3$$
 ; $Q(x) = -x^5 + x^2 - 5$

II) Calculer
$$P(x) \times Q(x)$$
 et $(P(x))^2$

Dans chacun des cas suivants et comparer : $deg(P \times Q)$ et deg(P) + deg(Q)

1)
$$P(x) = x^2 - 1$$
 ; $Q(x) = x^2 + 2x - 3$

2)
$$P(x) = x^4 - x^2 + 2$$
 ; $Q(x) = 3x + 2$

Solution: I) 1)
$$P(x) = x^3 + 2x^2 - 1$$
 ; $Q(x) = 3x^4 - x^3 + x$

On a:
$$P(x)+Q(x)=x^3+2x^2-1+3x^4-x^3+x$$

Donc:
$$P(x)+Q(x)=3x^4+2x^2+x-1$$

On a:
$$P(x)-Q(x)=x^3+2x^2-1-3x^4+x^3-x$$
 $P(x)-Q(x)=-3x^4+2x^3+2x^2-x-1$

$$3P(x)-2Q(x)=3(x^3+2x^2-1)-2(3x^4-x^3+x)3P(x)-2Q(x)=3x^3+6x^2-3-6x^4+2x^3-2x$$

$$3P(x)-2Q(x)=-6x^4+5x^3+6x^2-2x-3$$

$$deg(P) = 3$$
; $deg(Q) = 4$; $deg(P+Q) = 4$; $deg(P-Q) = 4$

I) 2)
$$P(x) = x^5 - x^2 + 3$$
; $Q(x) = -x^5 + x^2 - 5$

On a:
$$P(x)+Q(x)=x^5-x^2+3-x^5+x^2-5=-2$$

On a:
$$P(x)-Q(x)=x^5-x^2+3+x^5-x^2+8=2x^5-2x^2+8$$

$$3P(x)-2Q(x)=3(x^5-x^2+3)-2(-x^5+x^2-5)$$

$$3P(x)-2Q(x)=3x^5-3x^2+9+2x^5-2x^2+10$$

$$3P(x)-2Q(x)=5x^5-5x^2+19$$

$$deg(P) = 5$$
; $deg(Q) = 5$; $deg(P+Q) = 0$; $deg(P-Q) = 5$

II) 1) on a
$$P(x) = x^2 - 1$$
; $Q(x) = x^2 + 2x - 3$

$$P(x) \times Q(x) = (x^2 - 1)(x^2 + 2x - 3) = x^5 + 2x^4 - 3x^3 - x^2 - 2x + 3$$

$$(P(x))^2 = (x^2 - 1)^2 = (x^2)^2 - 2x^2 \times 1 + 1 = x^4 - 2x^2 + 1$$

2)
$$P(x) = x^4 - x^2 + 2$$
; $Q(x) = 3x + 2$

$$P(x)\times Q(x) = (3x+2)(x^4-x^2+2) = 3x^5+2x^4-3x^3-2x^2+6x+4$$

$$(P(x))^2 = (x^4 - x^2 + 2)^2 = (x^4 - x^2 + 2)(x^4 - x^2 + 2)$$

$$(P(x))^{2} = (x^{4} - x^{2} + 2)^{2} = x^{8} - 2x^{6} + 5x^{4} - 4x^{2} + 4$$

$$deg(P \times Q) = 5$$
 $deg(P) = 4$; $deg(Q) = 1$

Donc
$$\deg(P \times Q) = \deg(P) + \deg(Q)$$
 et $\deg(P^2) = 2\deg(P)$

- 2) Résumé :
- a) La somme de deux polynômes : Soient P et Q deux polynômes

La somme de P et Q est un polynôme noté P+Q tel que :

$$(P+Q)(x)=(P)(x)+(Q)(x)$$
 Pour tous $x \in \mathbb{R}$

Remarque: $deg(P+Q) \le max(deg(P); deg(Q))$

b) Le produit d'un polynôme par un réel : Soient P un polynôme et $\alpha \in \mathbb{R}^*$

Le produit de P par un réel α est un polynôme noté αP et tel que :

$$(\alpha P)(x) = \alpha \times (P)(x)$$
 pour tout $x \in \mathbb{R}$

Remarque: $deg(\alpha P) = deg(P)$

c) Le produit de deux polynômes :Soient P et Q deux polynômes non nuls

Le produit de P et Q est un polynôme noté PQ et tel que : $(PQ)(x) = (P)(x) \times (Q)(x)$; $x \in \mathbb{R}$

Remarque : deg(PQ) = deg(P) + deg(Q)

- III) La division par x a et factorisation de polynômes
- 1) La division euclidienne d'un polynôme par x a

Propriétés et définitions : a) Soit P un polynôme de degré $n \in \mathbb{N}$ et soit $a \in \mathbb{R}$

Alors il existe un unique polynôme Q de degré $\,n-1\,$ et tel que :

$$P(x) = (x-a)Q(x) + P(a)$$
 pour tous $x \in \mathbb{R}$

Cette égalité est la division euclidienne de P(x) par : x-a et Q(x) est le quotient et P(a) le reste.

b) Soit P un polynôme et soit $a \in \mathbb{R}$.

On dit que a est racine du polynôme P si et seulement si P(a) = 0

c) Soit P un polynôme de degré $n \in \mathbb{N}^*$ et soit $a \in \mathbb{R}$; a est racine du polynôme P ssi P(x) est divisible par x-a.

Exemple : Soit le polynôme : $P(x) = x^3 - 2x^2 - 5x + 6$

1) Vérifier que 1 est racine du polynôme P(x)

2) Factoriser : P(x)

Solution :1) $P(1) = 1^3 - 2 \times 1^2 - 5 \times 1 + 6 = 1 - 2 - 5 + 6 = 0$

Donc : 1 est racine du polynôme P(x)

2) 1 est racine du polynôme P(x)

Donc : P(x) est divisible par x-1

En effectuant la division euclidienne de : P(x) Par x-1 :

On trouve donc: $Q(x) = x^2 - x - 6$

Donc:
$$P(x) = (x-1)(x^2-x-6)$$

Exercice4: Soit:
$$P(x) = 2x^3 - 5x^2 - 4x + 3$$

- 1) montrer que le polynôme P(x) est divisible par x-3
- 2) En Effectuant la division euclidienne de P(x) par x-3 montrer que : P(x) = (x-3)Q(x)

Avec:
$$Q(x) = 2x^2 + x - 1$$

- 3) Résoudre dans \mathbb{R} l'équation Q(x) = 0
- 4) Résoudre dans \mathbb{R} l'inéquation $Q(x) \ge 0$
- 5) En déduire une factorisation du polynôme P(x) on produits de polynômes de 1ere degrés
- 6) Résoudre dans \mathbb{R} l'équation P(x) = 0
- 7) Résoudre dans \mathbb{R} l'inéquation P(x) > 0

Solution :1)
$$P(x) = 2x^3 - 5x^2 - 4x + 3$$

On a $P(3) = 2 \times 3^3 - 5 \times 3^2 - 4 \times 3 + 3 = 54 - 45 - 12 + 3 = 0$ donc 3est racine du polynôme P(x)

Donc P(x) est divisible par x-3

2) Effectuons la division euclidienne de P(x) par x-3

$$\begin{array}{c|c}
+ & 2x^3 - 5x^2 - 4x + 3 \\
-2x^3 + 6x^2 \\
\hline
 & x^2 - 4x + 3 \\
-x^2 + 3x \\
\hline
 & -x + 3 \\
\hline
 & x - 3 \\
\hline
 & 0
\end{array}$$
x-3

On trouve : P(x) = (x-3)Q(x) 1 et $Q(x) = 2x^2 + x - 1$

3) On a: $Q(x) = 2x^2 + x - 1$ et Q(x) = 0

$$\Delta = 1^2 - 4 \times 2 \times (-1) = 1 + 8 = 9$$

Donc:
$$x_1 = \frac{-1 - \sqrt{9}}{2 \times 2} = -1$$
 et $x_2 = \frac{-1 + \sqrt{9}}{2 \times 2} = \frac{1}{2}$ par suite: $S = \{-1, \frac{1}{2}\}$

4) $Q(x) \ge 0$ On a $x_1 = -1$ et $x_2 = \frac{1}{2}$ sont racines du polynôme Q(x)

Donc: le tableau de Signe:

 $x^3 - 2x^2 - 5x + 6$

 $\begin{array}{c|c} -x^2+x \\ \hline -6x+6 \end{array}$

	x	$-\infty$	-1		1/2	$+\infty$
4	Q(x)	+	þ	_	þ	+

Donc:
$$S =]-\infty; -1] \cup \left[\frac{1}{2}; +\infty\right]$$

5) Cherchons une factorisation du polynôme P(x) en produits de polynômes de 1ere degrés:

On a:
$$P(x) = (x-3)Q(x)$$
 avec $Q(x) = 2x^2 + x - 1$

Et les racines du polynôme
$$Q(x)$$
 sont : $x_1 = -1$ et $x_2 = \frac{1}{2}$

Donc : une factorisation de
$$Q(x)$$
 est : $Q(x) = 2(x-x_1)(x-x_2)$

Donc:
$$Q(x) = 2(x-\frac{1}{2})(x+1) = (2x-1)(x+1)$$
 par suite: $P(x) = (x-3)(2x-1)(x+1)$

6) On a:
$$P(x)=(x-3)(2x-1)(x+1)$$

$$P(x) = 0$$
 Signifie: $(x-3)(2x-1)(x+1) = 0$

Signifie:
$$x-3=0$$
 ou $2x-1=0$ ou $x+1=0$

Signifie:
$$x = 3$$
 ou $x = \frac{1}{2}$ ou $x = -1$ par suite: $S = \mathbb{R} - \{-3, -1, \frac{1}{2}\}$

7)
$$P(x) \succ 0$$
 Signifie: $(x-3)Q(x) \succ 0$:D'où le tableau de signe suivant :

x	$-\infty$ –	-1	$-\frac{1}{2}$	3	$+\infty$
Q(x)	+ (-	þ +		+
x-3	_	-	_	þ	+
P(x)	- (+	V –	þ	+

Par suite :
$$S = \left[-1; -\frac{1}{2} \right] \cup \left[3; +\infty \right[$$

Exercice5: Soit le polynôme suivant (E) :
$$P(x) = x^3 - \sqrt{2}x^2 - x + \sqrt{2}$$

- 1) Montrer que 1 est racine du polynôme P(x)
- 2) Montrer que : $P(x) = (x+1)(x^2 (\sqrt{2}+1)x + \sqrt{2})$
- 3) On pose : $Q(x) = x^2 (\sqrt{2} + 1)x + \sqrt{2}$ et soit Δ son discriminant
- a) Vérifier que : $\Delta = (\sqrt{2} 1)^2$
- b) Résoudre dans \mathbb{R} l'équation : Q(x) = 0
- 4) En déduire les solutions de l'équation : $x (\sqrt{2} + 1)\sqrt{x} + \sqrt{2} = 0$
- 5) Résoudre dans \mathbb{R} l'équation : P(x) = 0 6) Résoudre dans \mathbb{R} l'inéquation : $P(x) \le 0$

Solution :
$$P(x) = x^3 - \sqrt{2}x^2 - x + \sqrt{2}$$

1) Montrons que 1 est racine du polynôme
$$P(x)$$
: $P(-1) = (-1)^3 - \sqrt{2}(-1)^2 - (-1) + \sqrt{2}(-1)^3 - ($

$$P(-1) = -1 - \sqrt{2} + 1 + \sqrt{2}$$
 donc: $P(-1) = 0$

Donc 1 est racine du polynôme
$$P(x)$$

2) Montrons que :
$$P(x) = (x+1)(x^2 - (\sqrt{2}+1)x + \sqrt{2})$$

$$(x+1)\left(x^{2} - \left(\sqrt{2} + 1\right)x + \sqrt{2}\right) = x^{3} - \left(\sqrt{2} + 1\right)x^{2} + \sqrt{2}x + x^{2} - \left(\sqrt{2} + 1\right)x + \sqrt{2}$$

$$= x^{3} - \sqrt{2}x^{2} - x^{2} + \sqrt{2}x + x^{2} - \sqrt{2}x - x + \sqrt{2}$$

$$= x^{3} - \sqrt{2}x^{2} - x + \sqrt{2}$$

$$= P(x)$$

3) a)
$$\Delta = (\sqrt{2} + 1)^2 - 4 \times 1 \times \sqrt{2} = (\sqrt{2})^2 + 2 \times 1 \times \sqrt{2} + 1 - 4 \times 1 \times \sqrt{2}$$

$$\Delta = (\sqrt{2})^2 - 2 \times 1 \times \sqrt{2} + 1 = (\sqrt{2} - 1)^2$$

b) Résoudre dans
$$\mathbb{R}$$
 l'équation : $Q(x) = 0$: $Q(x) = x^2 - (\sqrt{2} + 1)x + \sqrt{2}$

$$\sqrt{\Delta} = \sqrt{\left(\sqrt{2} - 1\right)^2} = \left|\sqrt{2} - 1\right| = \sqrt{2} - 1 \text{ car} : \sqrt{2} - 1 > 0$$

On a
$$\Delta \succ 0$$
 donc: $x_1 = \frac{\sqrt{2} + 1 - \sqrt{2} + 1}{2 \times 1} = \frac{2}{2} = 1$ et $x_2 = \frac{\sqrt{2} + 1 + \sqrt{2} - 1}{2 \times 1} = \frac{2\sqrt{2}}{2} = \sqrt{2}$

Par suite: $S = \{\sqrt{2}; 1\}$

4) Recherche des solutions de l'équation :
$$x - (\sqrt{2} + 1)\sqrt{x} + \sqrt{2} = 0$$

$$x - (\sqrt{2} + 1)\sqrt{x} + \sqrt{2} = 0$$
 peut s'écrire sous la forme : $(\sqrt{x})^2 - (\sqrt{2} + 1)\sqrt{x} + \sqrt{2} = 0$

On pose :
$$X = \sqrt{x}$$
 On a donc : $X^2 - (\sqrt{2} + 1)X + \sqrt{2} = 0$

D'après la question précédente les solutions sont : $X_1 = \sqrt{2}$ et $X_2 = 1$

On a donc:
$$\sqrt{x} = \sqrt{2}$$
 et $\sqrt{x} = 1$

Donc:
$$(\sqrt{x})^2 = \sqrt{2}^2$$
 et $(\sqrt{x})^2 = 1^2$ c'est à dire : $x = 2$ et $x = 1$ par suite : $S = \{1; 2\}$

5) Recherche des solutions de l'équation
$$P(x) = 0$$
: On a : $P(x) = (x+1)(x^2 - (\sqrt{2}+1)x + \sqrt{2})$

$$P(x) = 0$$
 Signifie que : $x+1=0$ ou $x^2 - (\sqrt{2}+1)x + \sqrt{2} = 0$

Signifie que :
$$x = -1$$
 ou $x = \sqrt{2}$ ou $x = 1$ On a donc : $S = \{-1; 1; \sqrt{2}\}$

6) Résoudre dans \mathbb{R} l'inéquation $P(x) \leq 0$

$$P(x) \le 0$$
 Signifie que : $(x+1)(x^2-(\sqrt{2}+1)x+\sqrt{2}) \le 0$

x	$-\infty$ –	-1	1	√	$\overline{2} + \infty$
Q(x)	+	+	þ	- () +
x+1	- (+		+	+
P(x)	- (+	þ	- () +

On a donc: $S =]-\infty; -1] \cup [1; \sqrt{2}]$

Exercice6: Soit: $P(x) = 2x^4 - 9x^3 + 14x^2 - 9x + 2$

- 1) Vérifier que 0 n'est pas racine du polynôme P(x)
- 2) Montrer que si α est racine du polynôme P(x)

Alors $\frac{1}{\alpha}$ est aussi racine du polynôme P(x)

- 3) Vérifier que 2 est racine du polynôme P(x)
- 4) En Effectuant la division euclidienne de P(x) par x-2 Trouver un polynôme Q(x)

tel que : $P(x) = (x-2) \times Q(x)$

- 5) En déduire que : $Q\left(\frac{1}{2}\right) = 0$
- 6) Déterminer les réels a; b et c tel que : $Q(x) = \left(x \frac{1}{2}\right) \left(ax^2 + bx + c\right)$
- 7) En déduire une factorisation du polynôme P on polynômes de 1ere degrés

Solution :1) $P(0) = 2 \times 0^4 - 9 \times 0^3 + 14 \times 0^2 - 9 \times 0 + 2 = 2 \neq 0$

Donc 0 n'est pas racine du polynôme P(x)

2) α racine du polynôme est P(x)

Signifie que : $P(\alpha) = 0$

Signifie que : $2\alpha^4 - 9\alpha^3 + 14\alpha^2 - 9\alpha + 2 = 0$

On calcul $P\left(\frac{1}{\alpha}\right)$?

$$P\left(\frac{1}{\alpha}\right) = \frac{2}{\alpha^4} - \frac{9}{\alpha^3} + \frac{14}{\alpha^2} - \frac{9}{\alpha} + 2$$

$$P\left(\frac{1}{\alpha}\right) = \frac{2}{\alpha^4} - \frac{9\alpha}{\alpha^4} + \frac{14\alpha^2}{\alpha^4} - \frac{9\alpha^3}{\alpha^4} + \frac{2\alpha^4}{\alpha^4}$$

$$P\left(\frac{1}{\alpha}\right) = \frac{2\alpha^4 - 9\alpha^3 + 14\alpha^2 - 9\alpha + 2}{\alpha^4}$$

Et puisque $2\alpha^{4} - 9\alpha^{3} + 14\alpha^{2} - 9\alpha + 2 = 0$

Donc:
$$P\left(\frac{1}{\alpha}\right) = \frac{0}{\alpha^4} = 0$$

Donc : $\frac{1}{\alpha}$ Est aussi racine du polynôme P(x)

3)
$$P(2) = 2 \times 2^4 - 9 \times 2^3 + 14 \times 2^2 - 9 \times 2 + 2 = 32 - 72 + 56 - 18 + 2$$

 $P(2) = 2 \times 2^4 - 9 \times 2^3 + 14 \times 2^2 - 9 \times 2 + 2 = 32 - 72 + 56 - 18 + 2 = 0$

Donc :2 est racine du polynôme P(x)

4) En effectuant la division euclidienne de P(x) par x-2

On trouve que : $P(x) = (x-2) \times (2x^3 - 5x^2 + 4x - 1)$

5) On a 2 est racine du polynôme P(x)

Donc : $\frac{1}{2}$ est aussi racine du polynôme P(x)

Donc: $P\left(\frac{1}{2}\right) = 0$ et puisque $P(x) = (x-2) \times Q(x)$ $\left(\frac{1}{2} - 2\right) \times Q\left(\frac{1}{2}\right) = 0$

8

Alors:
$$\left(\frac{1}{2} - 2\right) \times Q\left(\frac{1}{2}\right) = 0$$
 or $\frac{1}{2} - 2 \neq 0$ donc: $Q\left(\frac{1}{2}\right) = 0$

6) En Effectuant la division euclidienne de Q(x) par : $x - \frac{1}{2}$ on trouve : $Q(x) = \left(x - \frac{1}{2}\right)\left(2x^2 - 4x + 2\right)$

Donc: a = 2 et b = -4 et c = 2

7) On a:
$$P(x) = (x-2) \times Q(x)$$
 et $Q(x) = \left(x - \frac{1}{2}\right) \left(2x^2 - 4x + 2\right)$

Donc:
$$P(x) = (x-2)(x-\frac{1}{2})(2x^2-4x+2)$$

On factorise aussi : $2x^2 - 4x + 2$. On remarque que 1 est racine

En Effectuant la division euclidienne de $2x^2 - 4x + 2$ par x - 1

On trouve: $2x^2-4x+2(x-1)(2x-2)$

Finalement:
$$P(x) = (x-2)(x-\frac{1}{2})(x-1)(2x-2)$$

$$P(x) = 2(x-2)(x-1)(x-1)$$
 C'est-à-dire : $P(x) = (x-2)(2x-1)(x-1)^2$

Exercice7: Soit le polynôme : $P(x) = x^3 + 3x^2 - x - 3$

- 1) Quels sont les diviseurs entiers relatifs du terme constant 3 ?
- 2) Déterminer (en cas d'existence) les racines relatives du polynôme P(x)
- 3) Factoriser le polynôme P(x) en un produit de monômes

4) Résoudre dans
$$\mathbb{R}$$
 l'inéquation $\frac{x-2}{P(x)} \ge 0$

Solution: 1) les diviseurs entiers relatifs du terme constant 3 sont : -3 ; -1 ;1 ;3

2) S'il existe une racine $a \in \mathbb{Z}$ du polynôme P(x) alors : P(a) = 0

C'est-à-dire : $a^3 + 3a^2 - a - 3 = 0$

C'est-à-dire : $a(a^2 + 3a - 1) = 3$

C'est-à-dire : a est un diviseur de 3

C'est-à-dire : $a \in \{-3, -1, 1, 3\}$

Maintenant il ne nous reste plus qu'à tester chacun de ces nombres s'il est racine :

On trouve seulement : $\begin{cases} P(-3) = (-3)^3 + 3(-3)^2 - (-3) - 3 = -27 + 27 + 3 - 3 = 0 \\ P(-1) = (-1)^3 + 3(-1)^2 - (-1) - 3 = -1 + 3 + 1 - 3 = 0 \\ P(1) = 1^3 + 3 \times 1^2 - 1 - 3 = 1 + 3 - 1 - 3 = 0 \end{cases}$

Donc : les racines relatives du polynôme P(x) sont : -3 et -1 et 1

3) Factorisons le polynôme P(x) en un produit de monômes

On a :-3 est racine du polynôme P(x) donc P(x) est divisible par x+3

Il existe donc un polynôme Q(x) tel que : P(x) = (x+3)Q(x)

Mais aussi on a : -1 est racine du polynôme P(x) c'est-à-dire : P(-1) = (-1+3)Q(-1) = 0

C'est-à-dire : Q(-1)=0

C'est-à-dire : -1 est racine du polynôme Q(x)

C'est-à-dire : Q(x) est divisible par x+1

C'est-à-dire : Il existe un polynôme R(x) tel que : Q(x) = (x+1)R(x)

Donc: P(x) = (x+3)(x+1)R(x)

Mais aussi on a : 1 est racine du polynôme P(x) c'est-à-dire : P(1) = (1+3)(1+1)R(1) = 0

C'est-à-dire : R(1) = 0

C'est-à-dire : 1 est racine du polynôme R(x)

C'est-à-dire : R(x) est divisible par x-1

C'est-à-dire : R(x) = (x-1)C(x)

Donc: P(x) = (x+3)(x+1)(x-1)C(x) Avec C(x) = c = 1 est une constante car deg P = 3

Donc: P(x) = (x+3)(x+1)(x-1)

$$4) \frac{2-x}{P(x)} \ge 0$$

(x+3)(x+1)(x-1)=0 Signifie: x+3=0 ou x+1=0 ou x-1=0

Signifie: x = -3 ou x = -1 ou x = 1

2-x=0 Signifie : Signifie : x=2Donc le tableau de signe suivant :

x	$-\infty$ -3 -1 1 2 $+\infty$				
x+1	_	- () +	+	+
x-1	_	_	- () +	+
x+3	- () +	+	+	+
2-x	+	+	+	+ () –
$\frac{2-x}{P(x)}$	_	+	_	+ () –

Donc: $S =]-3;-1[\cup]1;2]$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe. Que l'on devient un mathématicien

